477 research outputs found
Mott insulators in strong electric fields
Recent experiments on ultracold atomic gases in an optical lattice potential
have produced a Mott insulating state of Rb atoms. This state is stable to a
small applied potential gradient (an `electric' field), but a resonant response
was observed when the potential energy drop per lattice spacing (E), was close
to the repulsive interaction energy (U) between two atoms in the same lattice
potential well. We identify all states which are resonantly coupled to the Mott
insulator for E close to U via an infinitesimal tunneling amplitude between
neighboring potential wells. The strong correlation between these states is
described by an effective Hamiltonian for the resonant subspace. This
Hamiltonian exhibits quantum phase transitions associated with an Ising density
wave order, and with the appearance of superfluidity in the directions
transverse to the electric field. We suggest that the observed resonant
response is related to these transitions, and propose experiments to directly
detect the order parameters. The generalizations to electric fields applied in
different directions, and to a variety of lattices, should allow study of
numerous other correlated quantum phases.Comment: 17 pages, 14 figures; (v2) minor additions and new reference
Location Dictates Snow Aerodynamic Roughness
We conducted an experiment comparing wind speeds and aerodynamic roughness length (z0) values over three snow surface conditions, including a flat smooth surface, a wavy smooth surface, and a wavy surface with fresh snow added, using the wind simulation tunnel at the Shinjo Cryospheric Laboratory in Shinjo, Japan. The results indicate that the measurement location impacts the computed z0 values up to a certain measurement height. When we created small (4 cm high) snow bedforms as waves with a 50 cm period, the computed z0 values varied by up to 35% based on the horizontal sampling location over the wave (furrow versus trough). These computed z0 values for the smooth snow waves were not significantly different than those for the smooth flat snow surface. Fresh snow was then blown over the snow waves. Here, for three of four horizontal sampling locations, the computed z0 values were significantly different over the fresh snow-covered waves as compared to those over the smooth snow waves. Since meteorological stations are usually established over flat land surfaces, a smooth snow surface texture may seem to be an appropriate assumption when calculating z0, but the snowpack surface can vary substantially in space and time. Therefore, the nature of the snow surface geometry should be considered variable when estimating a z0 value, especially for modeling purposes
Simultaneous Diagonal and Off Diagonal Order in the Bose--Hubbard Hamiltonian
The Bose-Hubbard model exhibits a rich phase diagram consisting both of
insulating regimes where diagonal long range (solid) order dominates as well as
conducting regimes where off diagonal long range order (superfluidity) is
present. In this paper we describe the results of Quantum Monte Carlo
calculations of the phase diagram, both for the hard and soft core cases, with
a particular focus on the possibility of simultaneous superfluid and solid
order. We also discuss the appearance of phase separation in the model. The
simulations are compared with analytic calculations of the phase diagram and
spin wave dispersion.Comment: 28 pages plus 24 figures, uuencoded Revtex+postscript file
Depinning of semiflexible polymers in (1+1) dimensions
We present a theoretical analysis of a simple model of the depinning of an
anchored semiflexible polymer from a fixed planar substrate in (1+1)
dimensions. We consider a polymer with a discrete sequence of pinning sites
along its contour. Using the scaling properties of the conformational
distribution function in the stiff limit and applying the necklace model of
phase transitions in quasi-one-dimensional systems, we obtain a melting
criterion in terms of the persistence length, the spacing between pinning
sites, a microscopic effective length which characterizes a bond, and the bond
energy. The limitations of this and other similar approaches are also
discussed. In the case of force-induced unbinding, it is shown that the bending
rigidity favors the unbinding through a ``lever-arm effect''
From dynamical scaling to local scale-invariance: a tutorial
Dynamical scaling arises naturally in various many-body systems far from
equilibrium. After a short historical overview, the elements of possible
extensions of dynamical scaling to a local scale-invariance will be introduced.
Schr\"odinger-invariance, the most simple example of local scale-invariance,
will be introduced as a dynamical symmetry in the Edwards-Wilkinson
universality class of interface growth. The Lie algebra construction, its
representations and the Bargman superselection rules will be combined with
non-equilibrium Janssen-de Dominicis field-theory to produce explicit
predictions for responses and correlators, which can be compared to the results
of explicit model studies.
At the next level, the study of non-stationary states requires to go over,
from Schr\"odinger-invariance, to ageing-invariance. The ageing algebra admits
new representations, which acts as dynamical symmetries on more general
equations, and imply that each non-equilibrium scaling operator is
characterised by two distinct, independent scaling dimensions. Tests of
ageing-invariance are described, in the Glauber-Ising and spherical models of a
phase-ordering ferromagnet and the Arcetri model of interface growth.Comment: 1+ 23 pages, 2 figures, final for
European Consensus Statement on Expert Colposcopy
Peer reviewedPublisher PD
Random walks and polymers in the presence of quenched disorder
After a general introduction to the field, we describe some recent results
concerning disorder effects on both `random walk models', where the random walk
is a dynamical process generated by local transition rules, and on `polymer
models', where each random walk trajectory representing the configuration of a
polymer chain is associated to a global Boltzmann weight. For random walk
models, we explain, on the specific examples of the Sinai model and of the trap
model, how disorder induces anomalous diffusion, aging behaviours and Golosov
localization, and how these properties can be understood via a strong disorder
renormalization approach. For polymer models, we discuss the critical
properties of various delocalization transitions involving random polymers. We
first summarize some recent progresses in the general theory of random critical
points : thermodynamic observables are not self-averaging at criticality
whenever disorder is relevant, and this lack of self-averaging is directly
related to the probability distribution of pseudo-critical temperatures
over the ensemble of samples of size . We describe the
results of this analysis for the bidimensional wetting and for the
Poland-Scheraga model of DNA denaturation.Comment: 17 pages, Conference Proceedings "Mathematics and Physics", I.H.E.S.,
France, November 200
Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays
Average charged multiplicities have been measured separately in , and
light quark () events from decays measured in the SLD experiment.
Impact parameters of charged tracks were used to select enriched samples of
and light quark events, and reconstructed charmed mesons were used to select
quark events. We measured the charged multiplicities:
,
, from
which we derived the differences between the total average charged
multiplicities of or quark events and light quark events: and . We compared
these measurements with those at lower center-of-mass energies and with
perturbative QCD predictions. These combined results are in agreement with the
QCD expectations and disfavor the hypothesis of flavor-independent
fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters
Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events
The - oscillation frequency has been measured with a sample of
23 million \B\bar B pairs collected with the BABAR detector at the PEP-II
asymmetric B Factory at SLAC. In this sample, we select events in which both B
mesons decay semileptonically and use the charge of the leptons to identify the
flavor of each B meson. A simultaneous fit to the decay time difference
distributions for opposite- and same-sign dilepton events gives ps.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
- …