889 research outputs found

    Fluorescent carbon dioxide indicators

    Get PDF
    Over the last decade, fluorescence has become the dominant tool in biotechnology and medical imaging. These exciting advances have been underpinned by the advances in time-resolved techniques and instrumentation, probe design, chemical / biochemical sensing, coupled with our furthered knowledge in biology. Complementary volumes 9 and 10, Advanced Concepts of Fluorescence Sensing: Small Molecule Sensing and Advanced Concepts of Fluorescence Sensing: Macromolecular Sensing, aim to summarize the current state of the art in fluorescent sensing. For this reason, Drs. Geddes and Lakowicz have invited chapters, encompassing a broad range of fluorescence sensing techniques. Some chapters deal with small molecule sensors, such as for anions, cations, and CO2, while others summarize recent advances in protein-based and macromolecular sensors. The Editors have, however, not included DNA or RNA based sensing in this volume, as this were reviewed in Volume 7 and is to be the subject of a more detailed volume in the near future

    Implementation of Technology-based Patient Engagement Strategies within Practice-Based Research Networks (Poster)

    Get PDF
    Careyva, B. Shaak, K. Mills, G. Johnson, M. Goodrich, S. Stello, B. Wallace, L. (2016, Nov). Implementation of Technology-Based Patient Engagement Strategies within Practice-Based Research Networks. Poster Presented at: North American Primary Care Research Group, Colorado Springs, CO

    The Social Climbing Game

    Full text link
    The structure of a society depends, to some extent, on the incentives of the individuals they are composed of. We study a stylized model of this interplay, that suggests that the more individuals aim at climbing the social hierarchy, the more society's hierarchy gets strong. Such a dependence is sharp, in the sense that a persistent hierarchical order emerges abruptly when the preference for social status gets larger than a threshold. This phase transition has its origin in the fact that the presence of a well defined hierarchy allows agents to climb it, thus reinforcing it, whereas in a "disordered" society it is harder for agents to find out whom they should connect to in order to become more central. Interestingly, a social order emerges when agents strive harder to climb society and it results in a state of reduced social mobility, as a consequence of ergodicity breaking, where climbing is more difficult.Comment: 14 pages, 9 figure

    Full-scale modal testing of a Hawk T1A aircraft for benchmarking vibration-based methods

    Get PDF
    Research developments for structural dynamics in the fields of design, system identification and structural health monitoring (SHM) have dramatically expanded the bounds of what can be learned from measured vibration data. However, significant challenges remain in the tasks of identification, prediction and evaluation of full-scale structures. A significant aid in the roadmap to the application of cutting-edge methods to the demands of in-service engineering structures, is the development of comprehensive benchmark datasets. With the aim of developing a useful and worthwhile benchmark dataset for structural dynamics, an extensive testing campaign is presented here. This recent campaign was performed on a decommissioned BAE system Hawk T1A aircraft at the Laboratory for Verification and Validation (LVV) in Sheffield. The aim of this paper is to present the dataset, providing details on the structure, experimental design, and data acquired. The collected data is made freely and openly available with the intention that it serve as a benchmark dataset for challenges in full-scale structural dynamics. Here, the details pertaining to two test phases (frequency and time domain) are presented. So as to ensure that the presented dataset is able to function as a benchmark, some baseline-level results are additionally presented for the tasks of identification and prediction, using standard approaches. It is envisaged that advanced methodologies will demonstrate superiority by favourable comparison with the results presented here. Finally, some dataset-specific challenges are described, with a view to form a hierarchy of tasks and frame discussion over their relative difficulty

    Volatiles in lunar felsite clasts: Impact-related delivery of hydrous material to an ancient dry lunar crust

    Get PDF
    In this detailed geochemical, petrological, and microstructural study of felsite clast materials contained in Apollo breccia samples 12013, 14321, and 15405, little evidence was found for relatively enriched reservoirs of endogenic lunar volatiles. NanoSIMS measurements have revealed very low volatile abundances (≤2–18 ppm hydrogen) in nominally anhydrous minerals (NAMS) plagioclase, potassic alkali feldspar, and SiO2 that make up a majority of these felsic lithologies. Yet these mineral assemblages and clast geochemistries on Earth would normally yield relatively high volatiles contents in their NAMS (∼20 to ≥80 ppm hydrogen). This difference is particularly notable in felsite 14321,1062 that exhibits extremely low volatile abundances (≤2 ppm hydrogen) and a relatively low amount of microstructural evidence for shock metamorphism given that it is a clast of the most evolved (∼74 wt.% SiO2) rock-type returned from the Moon. If taken at face value, ‘wet’ felsic magmas (∼1.2–1.7 wt.% water) are implied by the relatively high hydrogen contents of feldspar in felsite clasts in Apollo samples 12013 and 15405, but these results are likely misleading. These felsic clasts have microstructural features indicative of significantly higher shock stress than 14321,1062. These crustal lithologies likely obtained no more water from the lunar interior than the magma body producing 14321,1062. Rather, we suggest hydrogen was enriched in samples 12013 and 15405 by impact induced exchange, and/or partial assimilation of volatiles added to the surface of the Moon by a hydrated impactor (asteroid or comet) or the solar wind. Thus, the best estimate for magmatic water contents of felsic lunar magmas comes from 14321,1062 that leads to a calculated magmatic water content of ≤0.2 wt.%. This dry felsic magma has a slightly greater, but comparable water content to the ancient mafic magmas implied by the other lithologies that we have studied. Based on this and expanding evidence for a significantly dry ancient or early degassed Moon it is likely that some recent estimates (100's ppm) of the water abundances in the lunar parental magma ocean have been overestimated

    Continuity of the Middle Stone Age into the Holocene

    Get PDF
    The African Middle Stone Age (MSA, typically considered to span ca. 300–30 thousand years ago [ka]), represents our species’ first and longest lasting cultural phase. Although the MSA to Later Stone Age (LSA) transition is known to have had a degree of spatial and temporal variability, recent studies have implied that in some regions, the MSA persisted well beyond 30 ka. Here we report two new sites in Senegal that date the end of the MSA to around 11 ka, the youngest yet documented MSA in Africa. This shows that this cultural phase persisted into the Holocene. These results highlight significant spatial and temporal cultural variability in the African Late Pleistocene, consistent with genomic and palaeoanthropological hypotheses that significant, long-standing inter-group cultural differences shaped the later stages of human evolution in Africa

    AUTC Physics Project: Learning outcomes and curriculum development

    Get PDF
    The Australian Universities Teaching Committee is funding a project to investigate the learning outcomes and curriculum development in physics at Australian universities. The project aims to map current practices and future directions in the broad areas of curriculum relating to service/multidisciplinary teaching and majors, employer satisfaction and industry involvement, and student satisfaction. A questionnaire has been administered with 85% return to date from the 34 physics departments or groups in Australian universities. In this paper we present the study design and initial results which include consideration of challenges faced by departments with respect to teaching and learning, departmental strengths and the development of new courses

    Magnetic phases and reorientation transitions in antiferromagnetically coupled multilayers

    Full text link
    In antiferromagnetically coupled superlattices grown on (001) faces of cubic substrates, e.g. based on materials combinations as Co/Cu, Fe/Si, Co/Cr, or Fe/Cr, the magnetic states evolve under competing influence of bilinear and biquadratic exchange interactions, surface-enhanced four-fold in-plane anisotropy, and specific finite-size effects. Using phenomenological (micromagnetic) theory, a comprehensive survey of the magnetic states and reorientation transitions has been carried out for multilayer systems with even number of ferromagnetic sub-layers and magnetizations in the plane. In two-layer systems (N=2) the phase diagrams in dependence on components of the applied field in the plane include ``swallow-tail'' type regions of (metastable) multistate co-existence and a number of continuous and discontinuous reorientation transitions induced by radial and transversal components of the applied field. In multilayers (N \ge 4) noncollinear states are spatially inhomogeneous with magnetization varying across the multilayer stack. For weak four-fold anisotropy the magnetic states under influence of an applied field evolve by a complex continuous reorientation into the saturated state. At higher anisotropy they transform into various inhomogeneous and asymmetric structures. The discontinuous transitions between the magnetic states in these two-layers and multilayers are characterized by broad ranges of multi-phase coexistence of the (metastable) states and give rise to specific transitional domain structures.Comment: Manuscript 34 pages, 14 figures; submitted for publicatio
    corecore