109 research outputs found
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
Africans Who Arrive in the United States before 20 Years of Age Maintain Both Cardiometabolic Health and Cultural Identity: Insight from the Africans in America Study
The overall consensus is that foreign-born adults who come to America age \u3c 20 y achieve economic success but develop adverse behaviors (smoking and drinking) that lead to worse cardiometabolic health than immigrants who arrive age ≥ 20 y. Whether age of immigration affects the health of African-born Blacks living in America is unknown. Our goals were to examine cultural identity, behavior, and socioeconomic factors and determine if differences exist in the cardiometabolic health of Africans who immigrated to America before and after age 20 y. Of the 482 enrollees (age: 38 ± 1 (mean ± SE), range: 20–65 y) in the Africans in America cohort, 23% (111/482) arrived age \u3c 20 y, and 77% (371/482) arrived age ≥ 20 y. Independent of francophone status or African region of origin, Africans who immigrated age \u3c 20 y had similar or better cardiometabolic health than Africans who immigrated age ≥ 20 y. The majority of Africans who immigrated age \u3c 20 y identified as African, had African-born spouses, exercised, did not adopt adverse health behaviors, and actualized early life migration advantages, such as an American university education. Due to maintenance of cultural identity and actualization of opportunities in America, cardiometabolic health may be protected in Africans who immigrate before age 20. In short, immigrant health research must be cognizant of the diversity within the foreign-born community and age of immigration
Effect of compost-, sand-, or gypsum-amended waste foundry sands on turfgrass yield and nutrient content
To prevent the 7 to 11 million metric tons of waste foundry
sand (WFS) produced annually in the USA from entering
landfi lls, current research is focused on the reuse of WFSs as
soil amendments. Th e eff ects of diff erent WFS-containing
amendments on turfgrass growth and nutrient content were
tested by planting perennial ryegrass (Lolium perenne L.) and
tall fescue (Schedonorus phoenix (Scop.) Holub) in diff erent
blends containing WFS. Blends of WFS were created with
compost or acid-washed sand (AWS) at varying percent by
volume with WFS or by amendment with gypsum (9.6 g
gypsum kg–1 WFS). Measurements of soil strength, shoot and
root dry weight, plant surface coverage, and micronutrients (Al,
Fe, Mn, Cu, Zn, B, Na) and macronutrients (N, P, K, S, Ca,
Mg) were performed for each blend and compared with pure
WFS and with a commercial potting media control. Results
showed that strength was not a factor for any of the parameters
studied, but the K/Na base saturation ratio of WFS:compost
mixes was highly correlated with total shoot dry weight for
perennial ryegrass (r = 0.995) and tall fescue (r = 0.94). Th is was
further substantiated because total shoot dry weight was also
correlated with shoot K/Na concentration of perennial ryegrass
(r = 0.99) and tall fescue (r = 0.95). A compost blend containing
40% WFS was determined to be the optimal amendment for
the reuse of WFS because it incorporated the greatest possible
amount of WFS without major reduction in turfgrass growth
Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors
We have performed a search for bursts of gravitational waves associated with the very bright gamma ray burst GRB030329, using the two detectors at the LIGO Hanford Observatory. Our search covered the most sensitive frequency range of the LIGO detectors (approximately 80 - 2048 Hz), and we specifically targeted signals shorter than 150ms. Our search algorithm looks for excess correlated power between the two interferometers and thus makes minimal assumptions about the gravitational waveform. We observed no candidates with gravitational-wave signal strength larger than a predetermined threshold. We report frequency-dependent upper limits on the strength of the gravitational waves associated with GRB030329. Near the most sensitive frequency region, around 250Hz, our root-sum-square (RSS) gravitational-wave strain sensitivity for optimally polarized bursts was better than hRSS 6×10-21Hz-1/2. Our result is comparable to the best published results searching for association between gravitational waves and gamma ray bursts. © 2005 The American Physical Society
Limits on gravitational-wave emission from selected pulsars using LIGO data
We place direct upper limits on the amplitude of gravitational waves from 28 isolated radio pulsars by a coherent multidetector analysis of the data collected during the second science run of the LIGO interferometric detectors. These are the first direct upper limits for 26 of the 28 pulsars. We use coordinated radio observations for the first time to build radio-guided phase templates for the expected gravitational-wave signals. The unprecedented sensitivity of the detectors allows us to set strain upper limits as low as a few times 10-24. These strain limits translate into limits on the equatorial ellipticities of the pulsars, which are smaller than 10-5 for the four closest pulsars. © 2005 The American Physical Society
Nuclear recoil calibration at Sub-keV energies in LUX and its impact on dark matter search sensitivity
Dual-phase xenon time projection chamber (TPC) detectors offer heightened sensitivities for dark matter detection across a spectrum of particle masses. To broaden their capability to low-mass dark matter interactions, we investigated the light and charge responses of liquid xenon (LXe) to sub-keV nuclear recoils. Using neutron events from a pulsed Adelphi Deuterium-Deuterium neutron generator, an in situ calibration was conducted on the LUX detector. We demonstrate direct measurements of light and charge yields down to 0.45 and 0.27 keV, respectively, both approaching single quanta production, the physical limit of LXe detectors. These results hold significant implications for the future of dual-phase xenon TPCs in detecting low-mass dark matter via nuclear recoils
- …
