14 research outputs found

    Knot soliton in Weinberg-Salam model

    Full text link
    We study numerically the topological knot solution suggested recently in the Weinberg-Salam model. Applying the SU(2) gauge invariant Abelian projection we demonstrate that the restricted part of the Weinberg-Salam Lagrangian containing the interaction of the neutral boson with the Higgs scalar can be reduced to the Ginzburg-Landau model with the hidden SU(2) symmetry. The energy of the knot composed from the neutral boson and Higgs field has been evaluated by using the variational method with a modified Ward ansatz. The obtained numerical value is 39 Tev which provides the upper bound on the electroweak knot energy.Comment: 6 pages, 3 figures, analysis of stability adde

    Comparison of some Reduced Representation Approximations

    Full text link
    In the field of numerical approximation, specialists considering highly complex problems have recently proposed various ways to simplify their underlying problems. In this field, depending on the problem they were tackling and the community that are at work, different approaches have been developed with some success and have even gained some maturity, the applications can now be applied to information analysis or for numerical simulation of PDE's. At this point, a crossed analysis and effort for understanding the similarities and the differences between these approaches that found their starting points in different backgrounds is of interest. It is the purpose of this paper to contribute to this effort by comparing some constructive reduced representations of complex functions. We present here in full details the Adaptive Cross Approximation (ACA) and the Empirical Interpolation Method (EIM) together with other approaches that enter in the same category

    Inclusive D±D^{*\pm} Cross Sections and D±D^{*\pm}-Jet Correlations in Photoproduction at HERA

    Get PDF
    Differential photoproduction cross sections are measured for events containing D*± mesons. The data were taken with the H1 detector at the ep collider HERA and correspond to an integrated luminosity of 51.1 pb-1. The kinematic region covers small photon virtualities Q2 < 0.01 GeV2 and photon–proton centre-of-mass energies of 171 < Wγ p < 256 GeV. The details of the heavy quark production process are further investigated in events with one or two jets in addition to the D*± meson. Differential cross sections for D*+jet production are determined and the correlations between the D*± meson and the jet(s) are studied. The results are compared with perturbative QCD predictions applying collinear- or kt-factorisation

    Production of D±D^{*\pm} Mesons with Dijets in Deep-Inelastic Scattering at HERA

    Get PDF
    Inclusive D*± production is measured in deep-inelastic ep scattering at HERA with the H1 detector. In addition, the production of dijets in events with a D*± meson is investigated. The analysis covers values of photon virtuality 2 ≤ Q2 ≤ 100 GeV2 and of inelasticity 0.05≤y≤0.7. Differential cross sections are measured as a function of Q2 and x and of various D*± meson and jet observables. Within the experimental and theoretical uncertainties all measured cross sections are found to be adequately described by next-to-leading order (NLO) QCD calculations, based on the photon–gluon fusion process and DGLAP evolution, without the need for an additional resolved component of the photon beyond what is included at NLO. A reasonable description of the data is also achieved by a prediction based on the CCFM evolution of partons involving the kT-unintegrated gluon distribution of the proton

    Measurement of the tt¯ charge asymmetry in events with highly Lorentz-boosted top quarks in pp collisions at s=13 TeV

    No full text
    The measurement of the charge asymmetry in top quark pair events with highly Lorentz-boosted top quarks decaying to a single lepton and jets is presented. The analysis is performed using proton-proton collisions at s=13TeV with the CMS detector at the LHC and corresponding to an integrated luminosity of 138 fb−1. The selection is optimized for top quarks produced with large Lorentz boosts, resulting in nonisolated leptons and overlapping jets. The top quark charge asymmetry is measured for events with a tt¯ invariant mass larger than 750 GeV and corrected for detector and acceptance effects using a binned maximum likelihood fit. The measured top quark charge asymmetry of (0.42−0.69+0.64)% is in good agreement with the standard model prediction at next-to-next-to-leading order in quantum chromodynamic perturbation theory with next-to-leading-order electroweak corrections. The result is also presented for two invariant mass ranges, 750–900 and >900GeV

    Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at s=13TeV

    No full text
    A search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state is presented. The analysis is based on proton-proton collision data recorded by the CMS detector in 2016–2018 at a centre-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 138fb−1. The search is sensitive to resonances with masses between 1.3 and 6TeV, decaying to bosons that are highly Lorentz-boosted such that each of the bosons forms a single large-radius jet. Machine learning techniques are employed to identify such jets. No significant excess over the estimated standard model background is observed. A maximum local significance of 3.6 standard deviations, corresponding to a global significance of 2.3 standard deviations, is observed at masses of 2.1 and 2.9 TeV. In a heavy vector triplet model, spin-1 Z′ and W′ resonances with masses below 4.8TeV are excluded at the 95% confidence level (CL). These limits are the most stringent to date. In a bulk graviton model, spin-2 gravitons and spin-0 radions with masses below 1.4 and 2.7TeV, respectively, are excluded at 95% CL. Production of heavy resonances through vector boson fusion is constrained with upper cross section limits at 95% CL as low as 0.1fb

    Measurement of the Bs0→μ+μ− decay properties and search for the B0 → μ+μ− decay in proton-proton collisions at s=13TeV

    No full text
    Measurements are presented of the Bs0→μ+μ− branching fraction and effective lifetime, as well as results of a search for the B0→μ+μ− decay in proton-proton collisions at s=13TeV at the LHC. The analysis is based on data collected with the CMS detector in 2016–2018 corresponding to an integrated luminosity of 140fb−1. The branching fraction of the Bs0→μ+μ− decay and the effective Bs0 meson lifetime are the most precise single measurements to date. No evidence for the B0→μ+μ− decay has been found. All results are found to be consistent with the standard model predictions and previous measurements

    Evidence for four-top quark production in proton-proton collisions at s=13TeV

    No full text
    The production of four top quarks (tt¯tt¯) is studied with LHC proton-proton collision data samples collected by the CMS experiment at a center-of-mass energy of 13 TeV, and corresponding to integrated luminosities of up to 138fb−1. Events that have no leptons (all-hadronic), one lepton, or two opposite-sign leptons (where lepton refers only to prompt electrons or prompt muons) are considered. This is the first tt¯tt¯ measurement that includes the all-hadronic final state. The observed significance of the tt¯tt¯ signal in these final states of 3.9 standard deviations (1.5 expected) provides evidence for tt¯tt¯ production, with a measured cross section of 36−11+12fb. Combined with earlier CMS results in other final states, the signal significance is 4.0 standard deviations (3.2 expected). The combination returns an observed cross section of 17±4(stat)±3(syst)fb, which is consistent with the standard model prediction

    Constraints on anomalous Higgs boson couplings to vector bosons and fermions from the production of Higgs bosons using the <math display="inline"><mi>τ</mi><mi>τ</mi></math> final state

    No full text
    International audienceA study of anomalous couplings of the Higgs boson to vector bosons and fermions is presented. The data were recorded by the CMS experiment at a center-of-mass energy of pp collisions at the LHC of 13 TeV and correspond to an integrated luminosity of 138  fb-1. The study uses Higgs boson candidates produced mainly in gluon fusion or electroweak vector boson fusion at the LHC that subsequently decay to a pair of τ leptons. Matrix-element and machine-learning techniques were employed in a search for anomalous interactions. The results are combined with those from the four-lepton and two-photon decay channels to yield the most stringent constraints on anomalous Higgs boson couplings to date. The pure CP-odd scenario of the Higgs boson coupling to gluons is excluded at 2.4 standard deviations. The results are consistent with the standard model predictions

    Population biology of human aging

    No full text
    corecore