1,502 research outputs found
Host Immune Response to ZIKV in an Immunocompetent Embryonic Mouse Model of Intravaginal Infection
Zika virus (ZIKV) only induces mild symptoms in adultshowever, it can cause congenital Zika syndrome (CZS), including microcephaly. Most of the knowledge on ZIKV pathogenesis was gained using immunocompromised mouse models, which do not fully recapitulate human pathology. Moreover, the study of the host immune response to ZIKV becomes challenging in these animals. Thus, the main goal of this study was to develop an immunocompetent mouse model to study the ZIKV spread and teratogeny. FVB/NJ immune competent dams were infected intravaginally with ZIKV during the early stage of pregnancy. We found that the placentae of most fetuses were positive for ZIKV, while the virus was detected in the brain of only about 42% of the embryos. To investigate the host immune response, we measured the expression of several inflammatory factors. Embryos from ZIKV-infected dams had an increased level of inflammatory factors, as compared to Mock. Next, we compared the gene expression levels in embryos from ZIKV-infected dams that were either negative or positive for ZIKV in the brain. The mRNA levels of viral response genes and cytokines were increased in both ZIKV-positive and negative brains. Interestingly, the levels of chemokines associated with microcephaly in humans, including CCL2 and CXCL10, specifically increased in embryos harboring ZIKV in the embryo brains
The genomics of visuospatial neurocognition in obsessive-compulsive disorder: A preliminary GWAS
Background: The study of Obsessive-Compulsive Disorder (OCD) genomics has primarily been tackled by Genome-wide association studies (GWAS), which have encountered troubles in identifying replicable single nucleotide polymorphisms (SNPs). Endophenotypes have emerged as a promising avenue of study in trying to elucidate the genomic bases of complex traits such as OCD.Methods: We analyzed the association of SNPs across the whole genome with the construction of visuospatial information and executive performance through four neurocognitive variables assessed by the Rey-Osterrieth Complex Figure Test (ROCFT) in a sample of 133 OCD probands. Analyses were performed at SNP- and genelevel.Results: No SNP reached genome-wide significance, although there was one SNP almost reaching significant association with copy organization (rs60360940; P = 9.98E-08). Suggestive signals were found for the four variables at both SNP- (P < 1E-05) and gene-levels (P < 1E-04). Most of the suggestive signals pointed to genes and genomic regions previously associated with neurological function and neuropsychological traits. Limitations: Our main limitations were the sample size, which was limited to identify associated signals at a genome-wide level, and the composition of the sample, more representative of rather severe OCD cases than a population-based OCD sample with a broad severity spectrum.Conclusions: Our results suggest that studying neurocognitive variables in GWAS would be more informative on the genetic basis of OCD than the classical case/control GWAS, facilitating the genetic characterization of OCD and its different clinical profiles, the development of individualized treatment approaches, and the improvement of prognosis and treatment response
The cohomological reduction method for computing n-dimensional cocyclic matrices
Provided that a cohomological model for is known, we describe a method
for constructing a basis for -cocycles over , from which the whole set of
-dimensional -cocyclic matrices over may be straightforwardly
calculated. Focusing in the case (which is of special interest, e.g. for
looking for cocyclic Hadamard matrices), this method provides a basis for
2-cocycles in such a way that representative -cocycles are calculated all at
once, so that there is no need to distinguish between inflation and
transgression 2-cocycles (as it has traditionally been the case until now).
When , this method provides an uniform way of looking for higher
dimensional -cocyclic Hadamard matrices for the first time. We illustrate
the method with some examples, for . In particular, we give some
examples of improper 3-dimensional -cocyclic Hadamard matrices.Comment: 17 pages, 0 figure
Complement Factor H Is Expressed in Adipose Tissue in Association With Insulin Resistance
10 páginas, 5 figuras, 5 tablas -- PAGS nros. 200-209OBJECTIVE Activation of the alternative pathway of the complement system, in which factor H (fH; complement fH [CFH]) is a key regulatory component, has been suggested as a link between obesity and metabolic disorders. Our objective was to study the associations between circulating and adipose tissue gene expressions of CFH and complement factor B (fB; CFB) with obesity and insulin resistance.
RESEARCH DESIGN AND METHODS Circulating fH and fB were determined by enzyme-linked immunosorbent assay in 398 subjects. CFH and CFB gene expressions were evaluated in 76 adipose tissue samples, in isolated adipocytes, and in stromovascular cells (SVC) (n = 13). The effects of weight loss and rosiglitazone were investigated in independent cohorts.
RESULTS Both circulating fH and fB were associated positively with BMI, waist circumference, triglycerides, and inflammatory parameters and negatively with insulin sensitivity and HDL cholesterol. For the first time, CFH gene expression was detected in human adipose tissue (significantly increased in subcutaneous compared with omental fat). CFH gene expression in omental fat was significantly associated with insulin resistance. In contrast, CFB gene expression was significantly increased in omental fat but also in association with fasting glucose and triglycerides. The SVC fraction was responsible for these differences, although isolated adipocytes also expressed fB and fH at low levels. Both weight loss and rosiglitazone led to significantly decreased circulating fB and fH levels.
CONCLUSIONS Increased circulating fH and fB concentrations in subjects with altered glucose tolerance could reflect increased SVC-induced activation of the alternative pathway of complement in omental adipose tissue linked to insulin resistance and metabolic disturbances.Obesity is closely associated with a cluster of metabolic diseases, such as dyslipidemia, hypertension, insulin resistance, type 2 diabetes, and atherosclerosis (1). Adipose tissue is well known for its essential role as an energy storage depot and for secreting adipokines that influence sites as diverse as brain, liver, muscle, β-cells, gonads, lymphoid organs, and systemic vasculature (2,3). Expression analysis of macrophage and nonmacrophage cell populations isolated from adipose tissue demonstrates that adipose tissue macrophages are responsible for most of the proinflammatory cytokines (4). In recent years, it has become evident that alterations in the function of the innate immune system are intrinsically linked to metabolic pathways in humans (5–8).
The complement system is a major component of the innate immune system, defending the host against pathogens, coordinating various events during inflammation, and bridging innate and adaptive immune responses. Complement deficiency and abnormalities in the regulation of the complement system lead to increased susceptibility to infection and chronic inflammatory diseases (9,10,11).
Factor H (fH) is a relatively abundant plasma glycoprotein that is essential to maintain complement homeostasis and to restrict the action of complement to activating surfaces. fH acts as a cofactor for factor I–mediated cleavage of C3b (the active fragment of the third component of complement C3), accelerates the dissociation of the alternative pathway C3 convertases (a bimolecular enzymatic complex formed by active fragments of C3 and factor B [fB]), and competes with fB for binding to C3b. fH regulates complement both in fluid phase and on cellular surfaces (12–16).
It has been suggested that activation of the alternative pathway of the complement system could be a link between obesity and metabolic disorders (17–21). Moreover, fB and factor D (fD, adipsin) are produced by adipose tissue where they likely influence formation of the alternative pathway component C3 convertase and the production of the anaphylatoxin C3a and its carboxypeptidase B-anaphylatoxic–inactivated derivative C3adesArg (acylation-stimulating protein [ASP]). Both ASP/C3adesArg and C3a interact with the receptor C5L2 to effectively stimulate triglyceride synthesis in cultured adipocytes (22). C3 knockout (C3KO) mice are obligatorily ASP deficient and present lipid abnormalities (23). In humans, ASP levels are increased in obesity, type 2 diabetes, and in individuals at risk of arterial disease, including those with hypertension, type 2 diabetes, dyslipidemia, and coronary artery disease, whereas exercise or weight loss decreases ASP levels (24,25). These data suggest a relationship between these conditions and activation of the alternative pathway of complement. There is also a correlation between increased C3 concentration and decreased insulin action (26,27). Levels of C3 and fB were higher in subjects with insulin resistance and other features of the metabolic syndrome (28,29).Given these interactions among activation of the alternative pathway of complement, metabolic disturbances, and a chronic low-level inflammatory state, we designed experiments to study the associations among circulating fH, fB, insulin resistance, lipid parameters, and inflammatory markers. We found that circulating fH and fB are strongly associated with obesity. For that reason, we also studied whether adipose tissue could constitute a source of circulating fH and fBThis work was partially supported by research grants from the Ministerio de Educación y Ciencia (SAF2008-02073). CIBEROBN Fisiopatología de la Obesidad y Nutrición is an initiative from the Instituto de Salud Carlos III from SpainPeer reviewe
PP2A is activated by cytochrome c upon formation of a diffuse encounter complex with SET/TAF-Iß
Intrinsic protein flexibility is of overwhelming relevance for intermolecular recognition and adaptability of highly dynamic ensemble of complexes, and the phenomenon is essential for the understanding of numerous biological processes. These conformational ensembles—encounter complexes—lack a unique organization, which prevents the determination of well-defined high resolution structures. This is the case for complexes involving the oncoprotein SET/template-activating factor-Iß (SET/TAF-Iß), a histone chaperone whose functions and interactions are significantly affected by its intrinsic structural plasticity. Besides its role in chromatin remodeling, SET/TAF-Iß is an inhibitor of protein phosphatase 2A (PP2A), which is a key phosphatase counteracting transcription and signaling events controlling the activity of DNA damage response (DDR) mediators. During DDR, SET/TAF-Iß is sequestered by cytochrome c (Cc) upon migration of the hemeprotein from mitochondria to the cell nucleus. Here, we report that the nuclear SET/TAF-Iß:Cc polyconformational ensemble is able to activate PP2A. In particular, the N-end folded, globular region of SET/TAF-Iß (a.k.a. SET/TAF-Iß ¿C)—which exhibits an unexpected, intrinsically highly dynamic behavior—is sufficient to be recognized by Cc in a diffuse encounter manner. Cc-mediated blocking of PP2A inhibition is deciphered using an integrated structural and computational approach, combining small-angle X-ray scattering, electron paramagnetic resonance, nuclear magnetic resonance, calorimetry and molecular dynamics simulations
Imaging neutron capture cross sections: i-TED proof-of-concept and future prospects based on Machine-Learning techniques
Babiano-Suárez, V., et al.i-TED is an innovative detection system which exploits Compton imaging techniques to achieve a superior signal-to-background ratio in (n, γ) cross-section measurements using time-of-flight technique. This work presents the first experimental validation of the i-TED apparatus for high-resolution time-of-flight experiments and demonstrates for the first time the concept proposed for background rejection. To this aim, the Au(n, γ) and Fe(n, γ) reactions were studied at CERN n_TOF using an i-TED demonstrator based on three position-sensitive detectors. Two CD detectors were also used to benchmark the performance of i-TED. The i-TED prototype built for this study shows a factor of ∼ 3 higher detection sensitivity than state-of-the-art CD detectors in the 10 keV neutron-energy region of astrophysical interest. This paper explores also the perspectives of further enhancement in performance attainable with the final i-TED array consisting of twenty position-sensitive detectors and new analysis methodologies based on Machine-Learning techniques.This work has been carried out in the framework of a project funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC Consolidator Grant project HYMNS, with grant agreement No. 681740). The authors acknowledge support from the Spanish Ministerio de Ciencia e Innovación under grants PID2019-104714GB-C21, FPA2017-83946-C2-1-P, FIS2015-71688-ERC, CSIC for funding PIE-201750I26, and the funding agencies of the participating institutes. We would like to thank the crew at the Electronics Laboratory of IFIC, in particular Manuel Lopez Redondo and Jorge Nácher Arándiga for their excellent and efficient work
Transmission Heterogeneity and Control Strategies for Infectious Disease Emergence
The control of emergence and spread of infectious diseases depends critically on the details of the genetic makeup of pathogens and hosts, their immunological, behavioral and ecological traits, and the pattern of temporal and spatial contacts among the age/stage-classes of susceptible and infectious host individuals.We show that failing to acknowledge the existence of heterogeneities in the transmission rate among age/stage-classes can make traditional eradication and control strategies ineffective, and in some cases, policies aimed at controlling pathogen emergence can even increase disease incidence in the host. When control strategies target for reduction in numbers those subsets of the population that effectively limit the production of new susceptible individuals, then control can produce a flush of new susceptibles entering the population. The availability of a new cohort of susceptibles may actually increase disease incidence. We illustrate these general points using Classical Swine Fever as a reference disease.Negative effects of culling are robust to alternative formulations of epidemiological processes and underline the importance of better assessing transmission structure in the design of wildlife disease control strategies
The ANTARES Optical Beacon System
ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It
consists of a three dimensional array of photomultiplier tubes that can detect
the Cherenkov light induced by charged particles produced in the interactions
of neutrinos with the surrounding medium. High angular resolution can be
achieved, in particular when a muon is produced, provided that the Cherenkov
photons are detected with sufficient timing precision. Considerations of the
intrinsic time uncertainties stemming from the transit time spread in the
photomultiplier tubes and the mechanism of transmission of light in sea water
lead to the conclusion that a relative time accuracy of the order of 0.5 ns is
desirable. Accordingly, different time calibration systems have been developed
for the ANTARES telescope. In this article, a system based on Optical Beacons,
a set of external and well-controlled pulsed light sources located throughout
the detector, is described. This calibration system takes into account the
optical properties of sea water, which is used as the detection volume of the
ANTARES telescope. The design, tests, construction and first results of the two
types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.
- …