358 research outputs found

    Tailoring the excitation of localized surface plasmon-polariton resonances by focusing radially-polarized beams

    Full text link
    We study the interaction of focused radially-polarized light with metal nanospheres. By expanding the electromagnetic field in terms of multipoles, we gain insight on the excitation of localized surface plasmon-polariton resonances in the nanoparticle. We show that focused radially-polarized beams offer more opportunities than a focused plane wave or a Gaussian beam for tuning the near- and far-field system response. These results find applications in nano-optics, optical tweezers, and optical data storage.Comment: 4 pages, 3 figure

    A Gradualist Approach to Criminality: Early British Socialists, Utopia and Crime

    Get PDF
    The attitudes of early British socialists to criminality are a thoroughly under-researched area of historical scholarship. This paper draws on the utopian ideas of Robert Owen, William Morris, H. G. Wells, Robert Blatchford, Edward Carpenter and Ramsay MacDonald as a vehicle for investigating the attitudes of mainstream fin de siècle British socialists to crime, punishment and penal reform. Placing these figures and their utopias along a spectrum that sees radical ‘Arcadian’ socialists on the far left, ‘technological’ socialists on the far right, and moderate socialists occupying the middle ground, it presents two principal findings. First it demonstrates how crime was predicted by most of the left to decrease to a minimum level under socialism. ‘Arcadians’, ‘technological’ and moderate socialists invoked different methods in this pursuit, but each were in essence grappling with the same broader issue of the relationship of the individual to the state under socialism. Secondly, examining the multifaceted ideological heritage of the British left in relation to their approaches to crime, it is argued that, despite the left’s gradualist philosophy, their own attitudes to criminality actually closely reflected utopian conceptions. Examination of these issues offers an important opportunity to re-evaluate the evolution of British socialist thought

    Onecut-dependent Nkx6.2 transcription factor expression is required for proper formation and activity of spinal locomotor circuits.

    Get PDF
    In the developing spinal cord, Onecut transcription factors control the diversification of motor neurons into distinct neuronal subsets by ensuring the maintenance of Isl1 expression during differentiation. However, other genes downstream of the Onecut proteins and involved in motor neuron diversification have remained unidentified. In the present study, we generated conditional mutant embryos carrying specific inactivation of Onecut genes in the developing motor neurons, performed RNA-sequencing to identify factors downstream of Onecut proteins in this neuron population, and employed additional transgenic mouse models to assess the role of one specific Onecut-downstream target, the transcription factor Nkx6.2. Nkx6.2 expression was up-regulated in Onecut-deficient motor neurons, but strongly downregulated in Onecut-deficient V2a interneurons, indicating an opposite regulation of Nkx6.2 by Onecut factors in distinct spinal neuron populations. Nkx6.2-null embryos, neonates and adult mice exhibited alterations of locomotor pattern and spinal locomotor network activity, likely resulting from defective survival of a subset of limb-innervating motor neurons and abnormal migration of V2a interneurons. Taken together, our results indicate that Nkx6.2 regulates the development of spinal neuronal populations and the formation of the spinal locomotor circuits downstream of the Onecut transcription factors

    Computer Simulations Provide Guidance for Molecular Medicine through Insights on Dynamics and Mechanisms at the Atomic Scale

    Get PDF
    International audienceComputer simulations provide crucial insights and rationales for the design of molecular approaches in medicine. Several case studies illustrate how molecular model building and molecular dynamics simulations of complex molecular assemblies such as membrane proteins help in that process. Important aspects relate to build relevant molecular models with and without a crystal structure, to model membrane aggregates, then to link (dynamic) models to function, and finally to understand key disease-triggering phenomena such as aggregation. Through selected examples-including key signaling pathways in neurotransmission-the links between a molecular-level understanding of biological mechanisms and original approaches to treat disease conditions will be illuminated. Such treatments may be symptomatic, e.g. by better understanding the function and pharmacology of macromolecular key players, or curative, e.g. through molecular inhibition of disease-inducing molecular processes

    Mutations in alpha-B-crystallin cause autosomal dominant axonal Charcot–Marie–Tooth disease with congenital cataracts

    Get PDF
    Background and purpose: Mutations in the alpha-B-crystallin (CRYAB) gene have initially been associated with myofibrillar myopathy, dilated cardiomyopathy and cataracts. For the first time, peripheral neuropathy is reported here as a novel phenotype associated with CRYAB. // Methods: Whole-exome sequencing was performed in two unrelated families with genetically unsolved axonal Charcot–Marie–Tooth disease (CMT2), assessing clinical, neurophysiological and radiological features. // Results: The pathogenic CRYAB variant c.358A>G;p.Arg120Gly was segregated in all affected patients from two unrelated families. The disease presented as late onset CMT2 (onset over 40 years) with distal sensory and motor impairment and congenital cataracts. Muscle involvement was probably associated in cases showing mild axial and diaphragmatic weakness. In all cases, nerve conduction studies demonstrated the presence of an axonal sensorimotor neuropathy along with chronic neurogenic changes on needle examination. // Discussion: In cases with late onset autosomal dominant CMT2 and congenital cataracts, it is recommended that CRYAB is considered for genetic testing. The identification of CRYAB mutations causing CMT2 further supports a continuous spectrum of expressivity, from myopathic to neuropathic and mixed forms, of a growing number of genes involved in protein degradation and chaperone-assisted autophagy

    Identification of proteins involved in neural progenitor cell targeting of gliomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glioblastoma are highly aggressive tumors with an average survival time of 12 months with currently available treatment. We have previously shown that specific embryonic neural progenitor cells (NPC) have the potential to target glioma growth in the CNS of rats. The neural progenitor cell treatment can cure approximately 40% of the animals with malignant gliomas with no trace of a tumor burden 6 months after finishing the experiment. Furthermore, the NPCs have been shown to respond to signals from the tumor environment resulting in specific migration towards the tumor. Based on these results we wanted to investigate what factors could influence the growth and progression of gliomas in our rodent model.</p> <p>Methods</p> <p>Using microarrays we screened for candidate genes involved in the functional mechanism of tumor inhibition by comparing glioma cell lines to neural progenitor cells with or without anti-tumor activity. The expression of candidate genes was confirmed at RNA level by quantitative RT-PCR and at the protein level by Western blots and immunocytochemistry. Moreover, we have developed <it>in vitro </it>assays to mimic the antitumor effect seen <it>in vivo</it>.</p> <p>Results</p> <p>We identified several targets involved in glioma growth and migration, specifically CXCL1, CD81, TPT1, Gas6 and AXL proteins. We further showed that follistatin secretion from the NPC has the potential to decrease tumor proliferation. <it>In vitro </it>co-cultures of NPC and tumor cells resulted in the inhibition of tumor growth. The addition of antibodies against proteins selected by gene and protein expression analysis either increased or decreased the proliferation rate of the glioma cell lines <it>in vitro</it>.</p> <p>Conclusion</p> <p>These results suggest that these identified factors might be useful starting points for performing future experiments directed towards a potential therapy against malignant gliomas.</p

    Optimized testing strategy for the diagnosis of GAA-FGF14 ataxia/spinocerebellar ataxia 27B

    Get PDF
    Dominantly inherited GAA repeat expansions in FGF14 are a common cause of spinocerebellar ataxia (GAA-FGF14 ataxia; spinocerebellar ataxia 27B). Molecular confirmation of FGF14 GAA repeat expansions has thus far mostly relied on long-read sequencing, a technology that is not yet widely available in clinical laboratories. We developed and validated a strategy to detect FGF14 GAA repeat expansions using long-range PCR, bidirectional repeat-primed PCRs, and Sanger sequencing. We compared this strategy to targeted nanopore sequencing in a cohort of 22 French Canadian patients and next validated it in a cohort of 53 French index patients with unsolved ataxia. Method comparison showed that capillary electrophoresis of long-range PCR amplification products significantly underestimated expansion sizes compared to nanopore sequencing (slope, 0.87 [95% CI, 0.81 to 0.93]; intercept, 14.58 [95% CI, − 2.48 to 31.12]) and gel electrophoresis (slope, 0.84 [95% CI, 0.78 to 0.97]; intercept, 21.34 [95% CI, − 27.66 to 40.22]). The latter techniques yielded similar size estimates. Following calibration with internal controls, expansion size estimates were similar between capillary electrophoresis and nanopore sequencing (slope: 0.98 [95% CI, 0.92 to 1.04]; intercept: 10.62 [95% CI, − 7.49 to 27.71]), and gel electrophoresis (slope: 0.94 [95% CI, 0.88 to 1.09]; intercept: 18.81 [95% CI, − 41.93 to 39.15]). Diagnosis was accurately confirmed for all 22 French Canadian patients using this strategy. We also identified 9 French patients (9/53; 17%) and 2 of their relatives who carried an FGF14 (GAA)≥250 expansion. This novel strategy reliably detected and sized FGF14 GAA expansions, and compared favorably to long-read sequencing

    TYROBP genetic variants in early-onset Alzheimer's disease

    Get PDF
    We aimed to identify new candidate genes potentially involved in early-onset Alzheimer's disease (EOAD). Exome sequencing was conducted on 45 EOAD patients with either a family history of Alzheimer's disease (AD, <65 years) or an extremely early age at the onset (≤55 years) followed by multiple variant filtering according to different modes of inheritance. We identified 29 candidate genes potentially involved in EOAD, of which the gene TYROBP, previously implicated in AD, was selected for genetic and functional follow-up. Using 3 patient cohorts, we observed rare coding TYROBP variants in 9 out of 1110 EOAD patients, whereas no such variants were detected in 1826 controls (p = 0.0001), suggesting that at least some rare TYROBP variants might contribute to EOAD risk. Overexpression of the p.D50_L51ins14 TYROBP mutant led to a profound reduction of TREM2 expression, a well-established risk factor for AD. This is the first study supporting a role for genetic variation in TYROBP in EOAD, with in vitro support for a functional effect of the p.D50_L51ins14 TYROBP mutation on TREM2 expression
    • …
    corecore