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Abstract. Computer simulations provide crucial insights and rationales for the
design of molecular approaches in medicine. Several case studies illustrate how
molecular model building and molecular dynamics simulations of complex mo-
lecular assemblies such as membrane proteins help in that process. Important
aspects relate to build relevant molecular models with and without a crystal
structure, to model membrane aggregates, then to link (dynamic) models to
function, and finally to understand key disease-triggering phenomena such as
aggregation. Through selected examples - including key signaling pathways in
neurotransmission - the links between a molecular-level understanding of bio-
logical mechanisms and original approaches to treat disease conditions will be
illuminated. Such treatments may be symptomatic, e.g. by better understanding
the function and pharmacology of macromolecular key players, or curative, e.g.
through molecular inhibition of disease-inducing molecular processes.

Keywords: Molecular dynamics, Model building, Molecular mechanisms of
disease.

1 Introduction

Models at the molecular level play a crucial role for the field of medicine, or more
generally-speaking biology. Their importance goes back well before the use of com-
putational approaches: for instance Watson and Crick used a mechanical model fabri-
cated in a workshop to gain insight into DNA structure. Such modeling approaches
are nowadays carried out on the computer, be it with a laptop or at a supercomputer
centre. They are very useful, from trying to understand the key properties of molecu-
lar building blocks such as metabolites, sugars, lipids and macromolecular fragments
to rationalizing the effect of mutations, identifying specific regions of interest, for
instance aggregation-prone ones, characterizing the dynamics of biological and medi-
cal processes, and to gain insight into fundamendal mechanisms governing disease.
Beyond such qualitative observations, the quantitative implementation of the mod-
eling process in relation to verifyable experimental measures represents one of the



key challenges. There are a few direct points of comparison, for example distances in
a model can be linked to FRET experiments, which are of interest for the validation of
the models, but not for medical purposes. Free energies and binding affinities may
provide quantitative information on the effect of mutations or the potency of drug
molecules, yet a direct prediction leading from the molecular level to a measurable
impact on disease conditions is nowadays clearly out of scope. Such a goal would at
the very least require to anticipate the complex interrelationships in metabolic net-
works - where the actors examined by molecular modeling are interconnected through
a web of other macromolecules - by linking the molecular level with a systems biolo-
gy representation. An overall scheme is provided in Figure 1.
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Figure 1. Schematic view of the connections between atomic scale models, repre-
senting a zoom of complex interrelated metabolic networks, and disease, as a conse-
quence of a network perturbation. Atomic scale models are illustrated with the estro-
gen receptor based on simulations described in [1], showing a static model with a key
mutation and a drug molecule highlighted in red. A dynamic picture is provided as the
next level of interpretation, here drug and mutation are colored from blue to red as a
function of timestep. Then, these computational models need to fit into a mechanistic
picture, here of estrogen receptor assembly, initiated by an estrogen signal and lead-
ing to the initiation of transcription.

In this contribution, we focus on the atomic scale aspects using several case stud-
ies. It is illustrated how computational approaches, in particular molecular model
building and molecular dynamics simulations of complex molecular assemblies such
as membrane proteins help in understanding these molecular processes. The examples



comprise important aspects related to building medically relevant molecular models
with and without a crystal structure, to model aggregates, then to link (dynamic) mod-
els to function, and finally to understand key disease-triggering phenomena such as
aggregation. In each case, the links between a molecular-level understanding of bio-
logical mechanisms and original approaches to treat disease conditions will be briefly
illuminated. Such treatments may be symptomatic through a better understanding of
the function and pharmacology of macromolecular key players, or curative, through
molecular inhibition of disease-inducing molecular processes, for instance. The man-
uscript ends with an overview of upcoming new tools that are likely to further im-
prove the power of computational approaches in the near future.

2 Linking computer simulations to disease

The key challenge for computer simulations to be of relevance for molecular medi-
cine is to establish a clear link between the insight gained at the atomic scale and a
given disease. This aspect is explored from three directions, i) the value of static,
three-dimensional molecular models, i7) adding dynamic information to such models,
and iii) considering the bigger picture of molecular mechanisms underpinning disease.
All modeling studies rely on a set of methods and tools to run, inspect and interpret
them. We conclude with a perspective on current trends to improve and extend the
portfolio of tools, with the potential to provide important breakthroughs in the future.

2.1 Learning from molecular models

How to build molecular models. In the simplest case, a disease may be directly
linked to a specific single-point mutation of a key molecule, the understanding of
which may provide important clues for therapies. Hence, building a 3-dimensional all-
atom model is a fundamental step on the way to better treatment. When the crystal or
NMR structure of the key molecule is known, model building follows a standard pro-
cedure. Typical approaches and setups are described in [2,3], highlighting specific
issues that may arise with membrane proteins. In a typical setup, it is required to
choose among potential alternative conformations, correct for mutations that may
have been required to achieve crystallization, and possibly predict the protonation
states of ionizable amino acids including His, Asp, Glu, Arg and Lys residues. A rela-
tion to diseases may be established by analyzing the 3D positions of mutations and
their molecular environment. This is the case for the low density lipoprotein receptor
[4], contributing to cholesterol cleansing in the blood. We analyzed four point muta-
tion sites involved in familiar hypercholesterolemia, the main risk factor in atheros-
clerosis, and understood their molecular origin through visual inspection revealing an
influence of nearby calcium ions, disulfide bridges, electrostatic and steric effects as
illustrated in Figure 2.
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Figure 2. Closeup of the low density lipoprotein receptor (LDLR) mutation sites
and nearby points of interest are shown on the left panel and labelled A to D. The
right panel shows the extracellular domain of LDLR at pH5 where these mutations are
located.

The effects of the four point mutations we studied were interpreted as follows.
C113R is involved in a stabilizing disulfide bridge (Fig. 2A) which will be lost upon
mutation. The positively charged Arg-mutant will furthermore repel the nearby calci-
um ion. The G266C residue shown in Fig. 2B sits between two close and several
more distant disulfide bridges. The cysteine mutant might lead to the formation of
alternative disulfide bridges. Its negative charge might lead to a change in coordina-
tion of the nearby calcium. P664L is in contact with a beta-sheet and part of a loop
(Fig. 2C). The Leu mutant is bulkier and no kink is induced. C690S is involved in a
disulfide bridge (Fig. 2D) which seems essential to maintain the local geometry.

Modeling without a crystal structure. The most common case is that the precise
structure of the molecule of interest is unknown. In the absence of any structurally
exploitable data (e.g. indirect experimental measurements), homology modeling is a
common choice. We employed such an approach to model a full-length Fzol mi-
tofusin, involved in membrane fusion, a fundamental mechanism which remains
unclear [5]. Mutations in the related human mitofusin MFN2 cause Charcot—Marie—
Tooth disease type 2a [6], which is characterized by degeneration of long peripheral
nerves. Furthermore, mitofusins can be linked to the etiology of Parkinson disease [7].
The predicted architecture of our model improves upon the current domain annota-
tion, with a precise description of the helical spans linked by exible hinges, and pro-
vided indications for several interesting mutations that were carried out and tested
experimentally.

A slightly different situation is observed when experimental data is available to
guide the modeling process. For example, the molecular knowledge of dystrophin, a
protein mutated in myopathy patients, remains limited, yet it is amenable to Small-
angle X-ray Scattering (SAXS) investigations. We designed an original interactive
docking method to model full-length dystrophin based on its fragments, integrating
qualitative experimental data restraints [8]. This model allowed us to show that the
central dystrophin domain is a tortuous and complex filament, profoundly disorgani-
zed by the most severe Becker muscular dystrophy deletions. The structural descrip-



tion gained through our model represents a first necessary step to improve the design
of microdystrophin constructs in the goal of a successful gene therapy for the severe
Duchenne muscular dystrophy [9].

2.2  Adding dynamics and linking to function

So far, we mostly considered static three-dimensional models, yet, dynamics is a key
factor in biological systems and processes. Typical simulation setups are described in
the literature [10,3]. An interesting and straightforward application example are
pharmacological chaperones (PC) used for the treatment of Fabry disease [11,12].
Fabry disease is a rare pathology caused by mutations of lysosomal alpha-
galactosidase. About 40% of all the disease missense mutations occur at flexible sites
of the protein [13], destabilizing it and leading to clearance by the quality control
system of the cell. An oral PC therapy uses 1-deoxygalactonojirimycin that reversibly
binds to the active site of the enzyme and stabilizes it. We demonstrated the effec-
tiveness of molecular dynamics (MD) simulations to correlate the genotype to the
severity of the disease. More generally, destabilizing mutations are widely encounte-
red in other proteins, hence MD may be useful for diagnostic purposes in other human
diseases.

2.3  Moving towards mechanisms

Previous examples focused on simple relationships between molecular models, static
or dynamic, and disease conditions. For many diseases the situation is more intricate,
requiring to understand entire complex molecular mechanisms leading to disease. The
modeling task may involve multi-step molecular processes with several actors in
complex environments such as the membrane. General anesthesia (GA) is such an
example. Although GA is not a disease, a better understanding of its mechanism is of
medical relevance as it would enable us to design better compounds and more effi-
cient palliative treatments. The mechanism of action remains a matter of controversy.
One proposed mode of action involves binding of anesthetic molecules to ligand
gated ion channels, modulating their function. We explored this mode at the molecu-
lar level by studying the membrane-inserted pentameric ligand-gated ion channel
GLIC for which many anesthetic binding sites were characterized. By performing MD
simulations to gain key insights on binding location and affinity, in particular micro-
second-long flooding simulations, combined with free energy calculations, we charac-
terized access to binding sites and quantified binding affinities. This study revealed a
complex network of interconnected binding sites, possibly all contributing in concert
to the anesthetic effect [14].

Another fundamendal mechanism of medical importance is aggregation, leading to
proteinopathies and neurodegenerative disorders. Modeling approaches have been
widely used to study Alzheimer's, as reviewed in [15,16]. In particular multi-scale and
multi-physics simulations may be required to address the sampling and time-scale
challenges imposed by the underlying processes [17], with some involved molecules
being possibly intrinsically disordered.



2.4  Towards new and improved tools

All studies described in this article require adequate modeling tools. Continuous im-
provement of algorithms, hardware and technology lead to new approaches to be ex-
plored. Key trends and upcoming new tools in computational biology may involve for
instance interactive model building and simulation as a very promising approach, in
particular when the methods are rendered robust enough such that non-specialists can
use them. In the current era of integrative modeling, much is yet to come in terms of
combining experimental data with modeling approaches. Another development is
next-level computational power, increasingly exploited through GPU computing, and
soon to be boosted by exa-scale high performance computing. These developments
lead to a much increased amount of data to interpret, and hence advanced analysis
tools are the next big challenge. Interactive approaches such as visual analytics help
the rationalization process, deep learning approaches may uncover complex relation-
ships in the data. Closely related are advanced visualization techniques, in particular
immersive ones such as virtual reality and augmented reality. They allow us to scruti-
nize complex three-dimensional datasets in a natural and intuitive way.

3 Conclusion

Computational modeling approaches bear great promise for understanding disease
conditions and to design improved and novel therapies. A few examples on how to
establish a link between the atomistic modeling scale and the medical implications
were discussed. Two strategies for treatments can be envisaged. In the symptomatic
approach, a better understanding of the function and pharmacology of macromolecu-
lar key players is targeted. For curative approaches, a deeper understanding of dis-
ease-inducing molecular processes is required such that e.g. molecular inhibitors for
critical steps can be designed. With the current developments in terms of computa-
tional power, intuitive, immersive and interactive analysis and manipulation methods,
much progress is yet to be expected in the near future.
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