1,159 research outputs found

    Raman Spectroscopy of Synthetic Antimicrobial Frog Peptides Magainin 2a and PGLa

    Get PDF
    Magainin and PGLa are 23- and 21-residue peptides isolated from the skin of the African clawed frog Xenopus lueuis. They protect the frog from infection and exhibit a broad-spectrum antimicrobial activity in vitro. The mechanism of this activity involves the interaction of magainin with microbial membranes. We have measured the secondary structure and membrane-perturbing ability of these peptides to obtain information about this mechanism. Our results show that mgn2a forms a helix with an average length of less than 20 Ã… upon binding to liposomes. At high concentrations (50 mg/mL) mgn2a spontaneously solubilizes phosphatidylcholine liposomes at temperatures above the gel-liquid-crystalline phase transition. Mgn2a appears to bind to the surface of liposomes made of negatively charged lipids without spontaneously penetrating the bilayer. Finally, mgn2a and PGLa interact together with liposomes in a synergistic way that enhances the helix content of one or both of the peptides and allows the peptides to more easily penetrate the bilayer. PGLa mixed with a small nonperturbing amount of magainin 2 amide is 25-43 times as potent as PGLa alone at inducing the release of carboxyfluorescein from liposomes. The results suggest that the mechanism of antimicrobial activity does not involve a channel formed by transmembrane helical peptides

    L-isoleucine-supplemented Oral Rehydration Solution in the Treatment of Acute Diarrhoea in Children: A Randomized Controlled Trial

    Get PDF
    Antimicrobial peptides represent an important component of the innate immune defenses of living organisms, including humans. They are broad-spectrum surface-acting agents secreted by the epithelial cells of the body in response to infection. Recently, L-isoleucine and its analogues have been found to induce antimicrobial peptides. The objectives of the study were to examine if addition of L-isoleucine to oral rehydration salts (ORS) solution would reduce stool output and/or duration of acute diarrhoea in children and induce antimicrobial peptides in intestine. This double-blind randomized controlled trial was conducted at the Dhaka Hospital of ICDDR,B. Fifty male children, aged 6-36 months, with acute diarrhoea and some dehydration, attending the hospital, were included in the study. Twenty-five children received L-isoleucine (2 g/L)-added ORS (study), and 25 received ORS without L-isoleucine (control). Stool weight, ORS intake, and duration of diarrhoea were the primary outcomes. There was a trend in reduction in mean±standard deviation (SD) daily stool output (g) of children in the L-isoleucine group from day 2 but it was significant on day 3 (388±261 vs 653±446; the difference between mean [95% confidence interval (CI) (-)265 (−509, −20); p=0.035]. Although the cumulative stool output from day 1 to day 3 reduced by 26% in the isoleucine group, it was not significant. Also, there was a trend in reduction in the mean±SD intake of ORS solution (mL) in the L-isoleucine group but it was significant only on day 1 (410±169 vs 564±301), the difference between mean (95% CI) (-)154 (-288, −18); p=0.04. The duration (hours) of diarrhoea was similar in both the groups. A gradual increase in stool concentrations of ß-defensin 2 and 3 was noted but they were not significantly different between the groups. L-isoleucine-supplemented ORS might be beneficial in reducing stool output and ORS intake in children with acute watery diarrhoea. A further study is warranted to substantiate the therapeutic effect of L-isoleucine

    Squalamine: An Appropriate Strategy against the Emergence of Multidrug Resistant Gram-Negative Bacteria?

    Get PDF
    We reported that squalamine is a membrane-active molecule that targets the membrane integrity as demonstrated by the ATP release and dye entry. In this context, its activity may depend on the membrane lipid composition. This molecule shows a preserved activity against bacterial pathogens presenting a noticeable multi-resistance phenotype against antibiotics such as polymyxin B. In this context and because of its structure, action and its relative insensitivity to efflux resistance mechanisms, we have demonstrated that squalamine appears as an alternate way to combat MDR pathogens and by pass the gap regarding the failure of new active antibacterial molecules

    Enhanced Membrane Pore Formation through High-Affinity Targeted Antimicrobial Peptides

    Get PDF
    Many cationic antimicrobial peptides (AMPs) target the unique lipid composition of the prokaryotic cell membrane. However, the micromolar activities common for these peptides are considered weak in comparison to nisin, which follows a targeted, pore-forming mode of action. Here we show that AMPs can be modified with a high-affinity targeting module, which enables membrane permeabilization at low concentration. Magainin 2 and a truncated peptide analog were conjugated to vancomycin using click chemistry, and could be directed towards specific membrane embedded receptors both in model membrane systems and whole cells. Compared with untargeted vesicles, a gain in permeabilization efficacy of two orders of magnitude was reached with large unilamellar vesicles that included lipid II, the target of vancomycin. The truncated vancomycin-peptide conjugate showed an increased activity against vancomycin resistant Enterococci, whereas the full-length conjugate was more active against a targeted eukaryotic cell model: lipid II containing erythrocytes. This study highlights that AMPs can be made more selective and more potent against biological membranes that contain structures that can be targeted

    Characterisation of three alpha-helical antimicrobial peptides from the venom of Scorpio maurus palmatus.

    Get PDF
    Scorpion venoms provide a rich source of anti-microbial peptides. Here we characterise three from the venom of Scorpion maurus palmatus. Smp13 is biologically inactive, despite sharing homology with other antimicrobial peptides, probably because it lacks a typically charged structure. Both Smp-24 and Smp-43 have broad spectrum antimicrobial activity, disrupting bacterial membranes. In addition, there is evidence that Smp24 may inhibit DNA synthesis in Bacillus subtilis. Smp24 haemolysed red blood cells but in contrast, Smp43 was non-haemolytic. The introduction of a flexible Gly-Val-Gly hinge into the middle of Smp24 did not alter the haemolytic activity of Smp24 (as might have been predicted from earlier studies with Pandinin2 (Pin2), although C-terminal truncation of Smp-24 reduced its haemolytic activity, in agreement with earlier Pin 2 studies. Smp24 and its derivatives, as well as Smp-43, were all cytotoxic (ATP release assay) toward mammalian HepG2 liver cells. Our results highlight the beneficial effect of helical-hinge-helical conformation on promoting prokaryotic selectivity of long chain scorpion AMPs, as well as the importance of examining a wide range of mammalian cell types in cytotoxicity testing

    Trodusquemine displaces protein misfolded oligomers from cell membranes and abrogates their cytotoxicity through a generic mechanism

    Get PDF
    10 pags., 5 figs.The onset and progression of numerous protein misfolding diseases are associated with the presence of oligomers formed during the aberrant aggregation of several different proteins, including amyloid-β (Aβ) in Alzheimer’s disease and α-synuclein (αS) in Parkinson’s disease. These small, soluble aggregates are currently major targets for drug discovery. In this study, we show that trodusquemine, a naturally-occurring aminosterol, markedly reduces the cytotoxicity of αS, Aβ and HypF-N oligomers to human neuroblastoma cells by displacing the oligomers from cell membranes in the absence of any substantial morphological and structural changes to the oligomers. These results indicate that the reduced toxicity results from a mechanism that is common to oligomers from different proteins, shed light on the origin of the toxicity of the most deleterious species associated with protein aggregation and suggest that aminosterols have the therapeutically-relevant potential to protect cells from the oligomer-induced cytotoxicity associated with numerous protein misfolding diseases.This work was supported by the Cambridge Centre for Misfolding Diseases (R.L., B.M., F.S.R., C.K.X., M.P., S.C., S.W.C., J.H., T.K., J.R.K., T.P.J.K., M.V., and C.M.D.), the UK Biotechnology and Biochemical Sciences Research Council (M.V. and C.M.D.), the Wellcome Trust (203249/Z/16/Z to T.P.J.K and M.V.), the Frances and Augustus Newman Foundation (T.P.J.K.), the Regione Toscana – FAS Salute, project SUPREMAL (R.C., A.B., C.C., and F.C.), the Gates Cambridge Trust and St. John’s College Cambridge (R.L.), Darwin College Cambridge (F.S.R.), the Herchel Smith Fund (C.K.X.), a Faculty Development Research Fund grant from the United States Military Academy, West Point (R.L.) and a DTRA Service Academy Research Initiative grant (HDTRA1033862 to R.L.)

    Trodusquemine displaces protein misfolded oligomers from cell membranes and abrogates their cytotoxicity through a generic mechanism

    Get PDF
    The onset and progression of numerous protein misfolding diseases are associated with the presence of oligomers formed during the aberrant aggregation of several different proteins, including amyloid-ß (Aß) in Alzheimer’s disease and a-synuclein (aS) in Parkinson’s disease. These small, soluble aggregates are currently major targets for drug discovery. In this study, we show that trodusquemine, a naturally-occurring aminosterol, markedly reduces the cytotoxicity of aS, Aß and HypF-N oligomers to human neuroblastoma cells by displacing the oligomers from cell membranes in the absence of any substantial morphological and structural changes to the oligomers. These results indicate that the reduced toxicity results from a mechanism that is common to oligomers from different proteins, shed light on the origin of the toxicity of the most deleterious species associated with protein aggregation and suggest that aminosterols have the therapeutically-relevant potential to protect cells from the oligomer-induced cytotoxicity associated with numerous protein misfolding diseases

    Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine

    Get PDF
    Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a `two-way road' - from bench to bedside and backwards from bedside to bench. Copyright (c) 2012 S. Karger AG, Base

    A natural product inhibits the initiation of a-synuclein aggregation & suppresses its toxicity

    Get PDF
    The self-Assembly of a-synuclein is closely associated with Parkinson''s disease and related syndromes. We show that squalamine, a natural product with known anticancer and antiviral activity, dramatically affects a-synuclein aggregation in vitro and in vivo. We elucidate the mechanism of action of squalamine by investigating its interaction with lipid vesicles, which are known to stimulate nucleation, and find that this compound displaces a-synuclein from the surfaces of such vesicles, thereby blocking the first steps in its aggregation process. We also show that squalamine almost completely suppresses the toxicity of a-synuclein oligomers in human neuroblastoma cells by inhibiting their interactions with lipid membranes. We further examine the effects of squalamine in a Caenorhabditis elegans strain overexpressing a-synuclein, observing a dramatic reduction of a-synuclein aggregation and an almost complete elimination of muscle paralysis. These findings suggest that squalamine could be a means of therapeutic intervention in Parkinson''s disease and related conditions

    Low pH enhances the action of maximin H5 against Staphylococcus aureus and helps mediate lysylated phosphatidylglycerol induced resistance

    Get PDF
    Maximin H5 (MH5) is an amphibian antimicrobial peptide specifically targeting Staphylococcus aureus. At pH 6, the peptide showed an increased ability to penetrate (∆П = 6.2 mN m-1) and lyse (lysis = 48 %) S. aureus membrane mimics, which incorporated physiological levels of lysylated phosphatidylglycerol (Lys-PG, 60 %) as compared to pH 7 (∆П = 5.6 mN m-1 and lysis = 40 % at pH 7) where levels of Lys-PG are lower (40 %). The peptide therefore appears to have optimal function at pH levels known to be optimal for the organism’s growth. MH5 killed S. aureus (minimum inhibitory concentration = 90 µM) via membranolytic mechanisms that involved the stabilization of α-helical structure (circa 45-50 %) and which showed similarities to the ‘Carpet’ mechanism based on its ability to increase the rigidity (Cs-1 = 109.94 mN m-1) and thermodynamic stability (∆Gmix = -3.0) of physiologically relevant S. aureus membrane mimics at pH 6. Based on theoretical analysis this mechanism may involve the use of a tilted peptide structure and efficacy was noted to vary inversely with the Lys-PG content of S. aureus membrane mimics for each pH studied (R2 circa 0.97), which led to the suggestion that under biologically relevant conditions, low pH helps mediate Lys-PG induced resistance in S. aureus to MH5 antibacterial action. The peptide showed a lack of haemolytic activity (< 2 % haemolysis) and merits further investigation as a potential template for development as an anti-staphylococcal agent in medically and biotechnically relevant areas
    • …
    corecore