171 research outputs found

    A new technique for elucidating β\beta-decay schemes which involve daughter nuclei with very low energy excited states

    Get PDF
    A new technique of elucidating β\beta-decay schemes of isotopes with large density of states at low excitation energies has been developed, in which a Broad Energy Germanium (BEGe) detector is used in conjunction with coaxial hyper-pure germanium detectors. The power of this technique has been demonstrated on the example of 183Hg decay. Mass-separated samples of 183Hg were produced by a deposition of the low-energy radioactive-ion beam delivered by the ISOLDE facility at CERN. The excellent energy resolution of the BEGe detector allowed γ\gamma rays energies to be determined with a precision of a few tens of electronvolts, which was sufficient for the analysis of the Rydberg-Ritz combinations in the level scheme. The timestamped structure of the data was used for unambiguous separation of γ\gamma rays arising from the decay of 183Hg from those due to the daughter decays

    In-gas-cell laser ionization spectroscopy in the vicinity of 100Sn: Magnetic moments and mean-square charge radii of N=50-54 Ag

    Full text link
    In-gas-cell laser ionization spectroscopy studies on the neutron deficient 97-101Ag isotopes have been performed with the LISOL setup. Magnetic dipole moments and mean-square charge radii have been determined for the first time with the exception of 101Ag, which was found in good agreement with previous experimental values. The reported results allow tentatively assigning the spin of 97,99Ag to 9/2 and confirming the presence of an isomeric state in these two isotopes, whose collapsed hyperfine structure suggests a spin of 1/2 . The effect of the N=50 shell closure is not only manifested in the magnetic moments but also in the evolution of the mean-square charge radii of the isotopes investigated, in accordance with the spherical droplet model predictions

    Population of a low-spin positive-parity band from high-spin intruder states in 177Au : The two-state mixing effect

    Get PDF
    The extremely neutron-deficient isotopes 177,179Au were studied by means of in-beam γ-ray spectroscopy. Specific tagging techniques, α-decay tagging in 177Au and isomer tagging in 179Au, were used for these studies. Feeding of positive-parity, nearly spherical states, which are associated with 2d3/2 and 3s1/2 proton-hole configurations, from the 1i13/2 proton-intruder configuration was observed in 177Au. Such a decay path has no precedent in odd-Au isotopes and it is explained by the effect of mixing of wave functions of the initial state

    Early onset of ground-state deformation in the neutron-deficient polonium isotopes

    Full text link
    In-source resonant ionization laser spectroscopy of the even-AA polonium isotopes 192210,216,218^{192-210,216,218}Po has been performed using the 6p37s6p^37s 5S2^5S_2 to 6p37p6p^37p 5P2^5P_2 (λ=843.38\lambda=843.38 nm) transition in the polonium atom (Po-I) at the CERN ISOLDE facility. The comparison of the measured isotope shifts in 200210^{200-210}Po with a previous data set allows to test for the first time recent large-scale atomic calculations that are essential to extract the changes in the mean-square charge radius of the atomic nucleus. When going to lighter masses, a surprisingly large and early departure from sphericity is observed, which is only partly reproduced by Beyond Mean Field calculations.Comment: As submitted to PR

    Alpha decay of 176Au

    Get PDF
    International audienceThe isotope Au176 has been studied in the complete fusion reaction Ca40+Pr141 → 176Au+5n at the velocity filter SHIP (GSI, Darmstadt). The complex fine-structure α decay of two isomeric states in Au176 feeding several previously unknown excited states in the daughter nucleus Ir172 is presented. An α-decay branching ratio of bα=9.5(11)% was deduced for the high-spin isomer in Ir172

    Probing the limit of nuclear existence: Proton emission from 159Re

    Get PDF
    AbstractThe observation of the new nuclide 15975Re84 provides important insights into the evolution of single-particle structure and the mass surface in heavy nuclei beyond the proton drip line. This nuclide, 26 neutrons away from the nearest stable rhenium isotope, was synthesised in the reaction 106Cd(58Ni, p4n) and identified via its proton radioactivity using the ritu gas-filled separator and the great focal-plane spectrometer. Comparisons of the measured proton energy (Ep=1805±20 keV) and decay half-life (t1/2=21±4 μs) with values calculated using the WKB method indicate that the proton is emitted from an h11/2 state. The implications of these results for future experimental investigations into even more proton unbound nuclei using in-flight separation techniques are considered

    Changes in mean-squared charge radii and magnetic moments of Tl 179-184 measured by in-source laser spectroscopy

    Get PDF
    Hyperfine structure and isotope shifts have been measured for the ground and isomeric states in the neutron-deficient isotopes Tl179-184 using the 276.9-nm transition. The experiment has been performed at the CERN-Isotope Separator On-Line facility using the in-source resonance-ionization laser spectroscopy technique. Spins for the ground states in Tl179,181,183 have been determined as I=1/2. Magnetic moments and changes in the nuclear mean-square charge radii have been deduced. By applying the additivity relation for magnetic moments of the odd-odd Tl nuclei the leading configuration assignments were confirmed. A deviation of magnetic moments for isomeric states in Tl182,184 from the trend of the heavier Tl nuclei is observed. The charge radii of the ground states of the isotopes Tl179-184 follow the trend for isotonic (spherical) lead nuclei. The noticeable difference in charge radii for ground and isomeric states of Tl183,184 has been observed, suggesting a larger deformation for the intruder-based 9/2- and 10- states compared to the ground states. An unexpected growth of the isomer shift for Tl183 has been found

    Nuclear structure of Au-181 studied via beta(+)/EC decay of Hg-181 at ISOLDE

    Get PDF
    The β+\beta ^+/EC decay of mass separated samples of 181^{181}Hg was studied employing the TATRA spectrometer at the ISOLDE facility at CERN. The decay scheme was constructed for the first time. A Broad Energy Germanium detector was used to achieve this by combination of high-gain γ\gamma -ray singles spectroscopy and γ\gamma γ\gamma  coincidences. The systematics of excited states associated with the 1h11/2h_{11/2} proton-hole configuration in odd-Au isotopes was extended

    Detailed α-decay study of 180Tl

    Get PDF
    International audienceA detailed α\alpha-decay spectroscopy study of 180Tl^{180}\mathrm{Tl} has been performed at ISOLDE (CERN). ZZ-selective ionization by the Resonance Ionization Laser Ion Source (RILIS) coupled to mass separation provided a high-purity beam of 180Tl^{180}\mathrm{Tl}. Fine-structure α\alpha decays to excited levels in the daughter 176Au^{176}\mathrm{Au} were identified and an α\alpha-decay scheme of 180Tl^{180}\mathrm{Tl} was constructed based on an analysis of α\alpha-γ\gamma and α\alpha-γ\gamma-γ\gamma coincidences. Multipolarities of several γ\gamma-ray transitions deexciting levels in 176Au^{176}\mathrm{Au} were determined. Based on the analysis of reduced α\alpha-decay widths, it was found that all α\alpha decays are hindered, which signifies a change of configuration between the parent and all daughter states

    De-excitation of the strongly coupled band in 177Au and implications for core intruder configurations in the light Hg isotopes

    Get PDF
    Excited states in the proton-unbound nuclide 177Au were populated in the 92Mo(88Sr, p2n) reaction and identified using the Jurogam-II and GREAT spectrometers in conjunction with the RITU gas-filled separator at the University of Jyväskylä Accelerator Laboratory. A strongly coupled band and its decay path to the 11/2− α-decaying isomer have been identified using recoil-decay tagging. Comparisons with cranked HartreeFock-Bogoliubov (HFB) calculations based on Skyrme energy functionals suggest that the band has a prolate deformation and is based upon coupling the odd 1h11/2 proton hole to the excited 0+ 2 configuration in the 178Hg core. Although these configurations might be expected to follow the parabolic trend of core Hg(0+2 ) states as a function of neutron number, the electromagnetic decay paths from the strongly coupled band in 177Au are markedly different from those observed in the heavier isotopes above the midshell. This indicates that a significant change in the structure of the underlying A+1Hg core occurs below the neutron midshell
    corecore