84 research outputs found

    The SOPHIE search for northern extrasolar planets: VI. Three new hot Jupiters in multi-planet extrasolar systems

    Full text link
    We present high-precision radial-velocity measurements of three solar-type stars: HD 13908, HD 159243, and HIP 91258. The observations were made with the SOPHIE spectrograph at the 1.93-m telescope of Observatoire de Haute-Provence (France). They show that these three bright stars host exoplanetary systems composed of at least two companions. HD 13908 b is a planet with a minimum mass of 0.865+-0.035 Mjup, on a circular orbit with a period of 19.382+-0.006 days. There is an outer massive companion in the system with a period of 931+-17 days, e = 0.12+-0.02, and a minimum mass of 5.13+-0.25 Mjup. The star HD 159243, also has two detected companions with respective masses, periods, and eccentricities of Mp = 1.13+-0.05 and 1.9+-0.13 Mjup, PP = 12.620+-0.004 and 248.4+-4.9 days, and e = 0.02+-0.02 and 0.075+-0.05. Finally, the star HIP 91258 has a planetary companion with a minimum mass of 1.068+-0.038 Mjup, an orbital period of 5.0505+-0.0015 days, and a quadratic trend indicating an outer planetary or stellar companion that is as yet uncharacterized. The planet-hosting stars HD 13908, HD 159243, and HIP 91258 are main-sequence stars of spectral types F8V, G0V, and G5V, respectively, with moderate activity levels. HIP 91258 is slightly over-metallic, while the two other stars have solar-like metallicity. The three systems are discussed in the frame of formation and dynamical evolution models of systems composed of several giant planets.Comment: accepted in A&

    SOPHIE velocimetry of Kepler transit candidates. V. The three hot Jupiters KOI-135b, KOI-204b and KOI-203b (alias Kepler-17b)

    Full text link
    We report the discovery of two new transiting hot Jupiters, KOI-135b and KOI-204b, that were previously identified as planetary candidates by Borucki et al. 2011, and, independently of the Kepler team, confirm the planetary nature of Kepler-17b, recently announced by Desert et al. 2011. Radial-velocity measurements, taken with the SOPHIE spectrograph at the OHP, and Kepler photometry (Q1 and Q2 data) were used to derive the orbital, stellar and planetary parameters. KOI-135b and KOI-204b orbit their parent stars in 3.02 and 3.25 days, respectively. They have approximately the same radius, Rp=1.20+/-0.06 R_jup and 1.24+/-0.07 R_jup, but different masses Mp=3.23+/-0.19 M_jup and 1.02+/-0.07 M_jup. As a consequence, their bulk densities differ by a factor of four, rho_p=2.33+/-0.36 g.cm^-3 (KOI-135b) and 0.65+/-0.12 g.cm-3 (KOI-204b). Our SOPHIE spectra of Kepler-17b, used both to measure the radial-velocity variations and determine the atmospheric parameters of the host star, allow us to refine the characterisation of the planetary system. In particular we found the radial-velocity semi-amplitude and the stellar mass to be respectively slightly smaller and larger than Desert et al. These two quantities, however, compensate and lead to a planetary mass fully consistent with Desert et al.: our analysis gives Mp=2.47+/-0.10 M_jup and Rp=1.33+/-0.04 R_jup. We found evidence for a younger age of this planetary system, t<1.8 Gyr, which is supported by both evolutionary tracks and gyrochronology. Finally, we confirm the detection of the optical secondary eclipse and found also the brightness phase variation with the Q1 and Q2 Kepler data. The latter indicates a low redistribution of stellar heat to the night side (<16% at 1-sigma), if the optical planetary occultation comes entirely from thermal flux. The geometric albedo is A_g<0.12 (1-sigma).Comment: submitted to Astronomy and Astrophysic

    SOPHIE velocimetry of Kepler transit candidates XII. KOI-1257 b: a highly eccentric three-month period transiting exoplanet

    Full text link
    In this paper we report a new transiting warm giant planet: KOI-1257 b. It was first detected in photometry as a planet-candidate by the Kepler{\it Kepler} space telescope and then validated thanks to a radial velocity follow-up with the SOPHIE spectrograph. It orbits its host star with a period of 86.647661 d ±\pm 3 s and a high eccentricity of 0.772 ±\pm 0.045. The planet transits the main star of a metal-rich, relatively old binary system with stars of mass of 0.99 ±\pm 0.05 Msun and 0.70 ± \pm 0.07 Msun for the primary and secondary, respectively. This binary system is constrained thanks to a self-consistent modelling of the Kepler{\it Kepler} transit light curve, the SOPHIE radial velocities, line bisector and full-width half maximum (FWHM) variations, and the spectral energy distribution. However, future observations are needed to confirm it. The PASTIS fully-Bayesian software was used to validate the nature of the planet and to determine which star of the binary system is the transit host. By accounting for the dilution from the binary both in photometry and in radial velocity, we find that the planet has a mass of 1.45 ± \pm 0.35 Mjup, and a radius of 0.94 ± \pm 0.12 Rjup, and thus a bulk density of 2.1 ± \pm 1.2 g.cm3^{-3}. The planet has an equilibrium temperature of 511 ±\pm 50 K, making it one of the few known members of the warm-jupiter population. The HARPS-N spectrograph was also used to observe a transit of KOI-1257 b, simultaneously with a joint amateur and professional photometric follow-up, with the aim of constraining the orbital obliquity of the planet. However, the Rossiter-McLaughlin effect was not clearly detected, resulting in poor constraints on the orbital obliquity of the planet.Comment: 39 pages, 17 figures, accepted for publication in Astronomy & Astrophysic

    Rethinking “democratic backsliding” in Central and Eastern Europe – looking beyond Hungary and Poland

    Get PDF
    This essay introduces contributions to a special issue of East European Politics on “Rethinking democratic backsliding in Central and Eastern Europe”, which seeks to expand the study of democratic regression in CEE beyond the paradigmatic cases of Hungary and Poland. Reviewing these contributions, we identify several directions for research: 1) the need to critique “democratic backsliding”, not simply as a label, but also as an assumed regional trend; 2) a need to better integrate the role of illiberal socio-economic structures such as oligarchical structures or corrupt networks; and 3) a need to (re-)examine the trade-offs between democratic stability and democratic quality. We also note how insights developed researching post-communist regions such as Western Balkans or the post-Soviet space could usefully inform work on CEE backsliding. We conclude by calling for the study of CEE democracy to become more genuinely interdisciplinary, moving beyond some narrowly institutionalist comparative political science assumptions

    WASP-113b and WASP-114b, two inflated hot Jupiters with contrasting densities

    Get PDF
    Aims. We present the discovery and characterisation of the exoplanets WASP-113b and WASP-114b by the WASP surveys, SOPHIE and CORALIE. Methods. The planetary nature of the systems was established by performing follow-up photometric and spectroscopic observations. The follow-up data were combined with the WASP-photometry and analysed with an MCMC code to obtain system parameters. Results. The host stars WASP-113 and WASP-114 are very similar. They are both early G-type stars with an effective temperature of ~5900 K, [Fe/H] ~ 0.12, and log g~ 4.1 dex. However, WASP-113 is older than WASP-114. Although the planetary companions have similar radii, WASP-114b is almost four times heavier than WASP-113b. WASP-113b has a mass of 0.48 MJup and an orbital period of ~4.5 days; WASP-114b has a mass of 1.77 MJup and an orbital period of ~1.5 days. Both planets have inflated radii, in particular WASP-113 with a radius anomaly of ℜ = 0.35. The high scale height of WASP-113b (~950 km) makes it a good target for follow-up atmospheric observations.Publisher PDFPeer reviewe

    Spin-orbit inclinations of the exoplanetary systems HAT-P-8, HAT-P-9, HAT-P-16 and HAT-P-23

    Full text link
    We report the measurement of the spin-orbit angle of the extra-solar planets HAT-P-8 b, HAT-P-9 b, HAT-P-16 b and HAT-P-23 b, thanks to spectroscopic observations performed at the Observatoire de Haute-Provence with the SOPHIE spectrograph on the 1.93-m telescope. Radial velocity measurements of the Rossiter-McLaughlin effect show the detection of an apparent prograde, aligned orbit for all systems. The projected spin-orbit angles are found to be lambda=-17 deg (+9.2,-11.5), -16 deg (8), -10 deg (16), +15 deg (22) for HAT-P-8, HAT-P-9, HAT-P-16 and HAT-P-23 respectively, with corresponding projected rotational velocities of 14.5 (0.8), 12.5 (1.8), 3.9 (0.8), and 7.8 (1.6) km/s. These new results increase to 37 the number of accurately measured spin-orbit angles in transiting extrasolar systems. We conclude by drawing a tentative picture of the global behaviour of orbital alignement, involving the complexity and diversity of possible mechanisms.Comment: accepted in A&

    Organizing for impact: International organizations and global pension policy

    Get PDF
    The internal dynamics and politics of international organizations influence how international policy agendas are set and how effectively they are pursued. International organizations are open systems which respond and adapt to the external policy environment in order to remain relevant to global policymaking. Through an analysis of the internal politics of the World Bank and International Labour Organization, the leading global agenda-setters for pension reform, this article shows that internal political battles and restructuring have a decisive influence on global pensions policy. Appointment of key personnel and internal reorganization can help make certain policy ideas prominent over others. Scholars should pay greater attention to processes of change within international organizations in order to better understand the international agenda setting process
    corecore