32 research outputs found

    A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation

    Get PDF
    An efficient calibration method has been developed for broad-bandwidth cavity enhanced absorption spectroscopy. The calibration is performed using phase shift cavity ring-down spectroscopy, which is conveniently implemented through use of an acousto-optic tunable filter (AOTF). The AOTF permits a narrowband portion of the SC spectrum to be scanned over the full high-reflectivity bandwidth of the cavity mirrors. After calibration the AOTF is switched off and broad-bandwidth CEAS can be performed with the same light source without any loss of alignment to the set-up. We demonstrate the merits of the method by probing transitions of oxygen molecules O-2 and collisional pairs of oxygen molecules (O-2)(2) in the visible spectral range

    Conductive cotton prepared by polyaniline in situ polymerization using laccase

    Get PDF
    The high-redox-potential catalyst laccase, isolated from Aspergillus, was first used as a biocatalyst in the oxidative polymerization of water-soluble conductive polyaniline, and then conductive cotton was prepared by in situ polymerization under the same conditions. The polymerization of aniline was performed in a water dispersion of sodium dodecylbenzenesulfonate (SDBS) micellar solution with atmospheric oxygen serving as the oxidizing agent. This method is ecologically clean and permits a greater degree of control over the kinetics of the reaction. The conditions for polyaniline synthesis were optimized. Characterizations of the conducting polyaniline and cotton were carried out using Fourier transform infrared spectroscopy, UV–vis spectroscopy, cyclic voltammetry, the fabric induction electrostatic tester, and the far-field EMC shielding effectiveness test fixture.This work was financially supported by the National Natural Science Foundation of China (21274055, 51173071), the Program for New Century Excellent Talents in University (NCET-12-0883), the Natural Science Foundation of Jiangsu Province (BK2011157), the Fundamental Research Funds for the Central Universities (JUSRP51312B), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT1135)

    Trace species detection in the near infrared using Fourier transform broadband cavity enhanced absorption spectroscopy: Initial studies on potential breath analytes

    Get PDF
    Cavity enhanced absorption measurements have been made of several species that absorb light between 1.5 and 1.7 µm using both a supercontinuum source and superluminescent light emitting diodes. A system based upon an optical enhancement cavity of relatively high finesse, consisting of mirrors of reflectivity ∼99.98%, and a Fourier transform spectrometer, is demonstrated. Spectra are recorded of isoprene, butadiene, acetone and methane, highlighting problems with spectral interference and unambiguous concentration determinations. Initial results are presented of acetone within a breath-like matrix indicating ppm precision at <∼10 ppm acetone levels. Instrument sensitivities are sufficiently enhanced to enable the detection of atmospheric levels of methane. Higher detection sensitivities are achieved using the supercontinuum source, with a minimum detectable absorption coefficient of ∼4 × 10(-9) cm(-1) reported within a 4 min acquisition time. Finally, two superluminescent light emitting diodes are coupled together to increase the wavelength coverage, and measurements are made simultaneously on acetylene, CO(2), and butadiene. The absorption cross-sections for acetone and isoprene have been measured with an instrumental resolution of 4 cm(-1) and are found to be 1.3 ± 0.1 × 10(-21) cm(2) at a wavelength of 1671.9 nm and 3.6 ± 0.2 × 10(-21) cm(2) at 1624.7 nm, respectively

    PCF-Based Cavity Enhanced Spectroscopic Sensors for Simultaneous Multicomponent Trace Gas Analysis

    Get PDF
    A multiwavelength, multicomponent CRDS gas sensor operating on the basis of a compact photonic crystal fibre supercontinuum light source has been constructed. It features a simple design encompassing one radiation source, one cavity and one detection unit (a spectrograph with a fitted ICCD camera) that are common for all wavelengths. Multicomponent detection capability of the device is demonstrated by simultaneous measurements of the absorption spectra of molecular oxygen (spin-forbidden b-X branch) and water vapor (polyads 4v, 4v + δ) in ambient atmospheric air. Issues related to multimodal cavity excitation, as well as to obtaining the best signal-to-noise ratio are discussed together with methods for their practical resolution based on operating the cavity in a “quasi continuum” mode and setting long camera gate widths, respectively. A comprehensive review of multiwavelength CRDS techniques is also given

    Structure and Morphology of Silver Nanoparticles on the (111) Surface of Cerium Oxide

    Get PDF
    The structure of Ag nanoparticles of different size, supported on the cerium oxide (111) surface, was investigated by X-ray absorption fine structure at the Ag K-edge. The results of the data analysis in the near and extended energy range are interpreted with the help of the results obtained by X-ray photoelectron spectroscopy and scanning tunneling microscopy measurements and allow to obtain a detailed atomic scale description of the model system investigated. The Ag nanoparticles have an average size of a few tens of angstroms, which increases with increasing deposited Ag amount. The nanoparticles show a slight tendency to nucleate at the step edges between different cerium oxide layers and they have a face centered cubic structure with an Ag-Ag interatomic distance contracted by 3-4% with respect to the bulk value. The interatomic distance contraction is mainly ascribed to dimensionality induced effects, while epitaxial effects have a minor role. The presence of Ag-O bonds at the interface between the nanoparticles and the supporting oxide is also detected. The Ag-O interatomic distance decreases with decreasing nanoparticle size

    Surface Assembly and Redox Dissolution of Silver Nanoparticles Monitored by Evanescent Wave Cavity Ring-Down Spectroscopy

    No full text
    The adsorption kinetics of Ag nanoparticles on a silica surface modified with poly-l-lysine (PLL) have been measured in situ by following the interfacial optical absorbance at 405 nm by evanescent wave cavity ring-down spectroscopy (EW-CRDS). Sensitivity toward nanoparticle detection is enhanced due to the plasmon resonance of the Ag nanoparticles. The redox-dissolution kinetics of the immobilized nanoparticles have been investigated by two distinct approaches. First, IrCl62− was generated electrochemically from IrCl63− by a chronoamperometric potential step in a thin-layer cell configuration formed between the silica surface and a Pt macroelectrode. The oxidative dissolution kinetics were obtained by monitoring the EW-CRDS signal as the nanoparticles dissolved. The reaction kinetics were extracted by complementary finite element modeling of diffusional and reaction processes. The second method of dissolution investigated involved the injection of IrCl62−(aq) directly at the surface by means of a microcapillary located close to the evanescent field

    Evanescent Wave Cavity Ring-Down Spectroscopy as a Probe of Interfacial Adsorption: Interaction of Tris(2,2′-bipyridine)ruthenium(II) with Silica Surfaces and Polyelectrolyte Films

    No full text
    Evanescent wave cavity ring-down spectroscopy (EW-CRDS) has been used to study the interaction of the tris(2,2′-bipyridine)ruthenium(II) complex, [Ru(bpy)3]2+, at both native silica surfaces and surfaces modified with polyelectrolyte films. Both poly-l-lysine (PLL) and PLL/poly-l-glutamic acid (PGA) bilayer functionalized interfaces have been studied. Concentration isotherms exhibit Langmuir-type adsorption behavior on both silica and PGA-terminated surfaces from which equilibrium constants have been derived. The pH-dependence of the [Ru(bpy)3]2+ adsorption to silica and the PLL/PGA film has also been investigated. For the latter substrate, the effective surface pKa of the acid groups was found to be 5.5. The effect of supporting electrolyte was also investigated and was shown to have a significant effect on the extent of [Ru(bpy)3]2+ adsorption. A thin-layer electrochemical cell arrangement, in which a working electrode was positioned just above the substrate, was used to change the solution pH in a controlled way via the potential-pulsed chronoamperometric oxidation of water. By measuring the optical absorption using EW-CRDS during such experiments, the desorption of [Ru(bpy)3]2+ from the surface has been monitored in real time. Experiments were carried out at different cell thicknesses and at various pulse durations. By combining data from the EW-CRDS experiments with fluorescence confocal laser scanning microscopy (CLSM) to determine the pH at the substrate surface, the pKa of the PLL/PGA film could be ascertained and was found to agree with the static pH isotherm measurements. These studies provide a platform for the further use of electrochemistry combined with EW-CRDS to investigate dynamic processes at interfaces

    Surface assembly and redox dissolution of silver nanoparticles monitored by evanescent wave cavity ring-down spectroscopy

    No full text
    The adsorption kinetics of Ag nanoparticles on a silica surface modified with poly-L-lysine (PLL) have been measured in situ by following the interfacial optical absorbance at 405 nm by evanescent wave cavity ringdown spectroscopy (EW-CRDS). Sensitivity toward nanoparticle detection is enhanced due to the plasmon resonance of the Ag nanoparticles. The redox-dissolution kinetics of the immobilized nanoparticles have been investigated by two distinct approaches. First, IrCl62- was generated electrochemically from IrCl62- by a chronoamperometric potential step in a thin-layer cell configuration formed between the silica surface and a Pt macroelectrode. The oxidative dissolution kinetics were obtained by monitoring the EW-CRDS signal as the nanoparticles dissolved. The reaction kinetics were extracted by complementary finite element modeling of diffusional and reaction processes. The second method of dissolution investigated involved the injection of IrCl62-(aq) directly at the surface by means of a microcapillary located close to the evanescent field. © 2008 American Chemical Society

    Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: A new probe of electrochemical processes

    No full text
    An evanescent wave variant of broadband cavity enhanced absorption spectroscopy using a supercontinuum light source has been used to detect electrogenerated species at the silica-water interface. In proof-of-concept experiments [IrCl6]2− was produced by electro-oxidation of [IrCl6]3− in a thin layer electrochemical cell. Diffusion of the Ir(IV) across the cell to a silica interface was monitored yielding real-time concentrations within an evanescent field region at the interface. The optical response was compared with the electrochemical response during chronoamperometric step and cyclic voltammetric experiments and both were simulated by finite element modeling. The experiment is highly sensitive to interfacial processes and its wide spectral width and fast time resolution make it a potentially powerful tool for in situ spectroscopic monitoring of processes and intermediates in dynamical electrochemistry. </p
    corecore