7 research outputs found

    A Reverse transcription-polymerase chain reaction (RT-PCR) based detection of foot and mouth disease in District Faisalabad, Pakistan during the Year 2016

    Get PDF
    Foot and mouth disease is an economically devastating disease of livestock that mainly effect cloven-hoofed animals i.e. sheep, goat, cattle, pig, buffalo, deer etc. The aim of this study was to determine the serotypes circulating in the region during 2016. Sampling was done from different outbreaks initially on the basis of clinical signs and later reverse transcriptase-polymerase chain reaction (RT-PCR) was employed for the confirmation of FMDV genome. Out of total 72 samples, 65 were found positive which were then serotyped into type O (n=30), Asia1 (n=19) and A (n=5). Some samples (n=5) were found positive for more than one serotype that were subjected to reverse transcriptase loop-mediated isothermal amplification assay (RT-LAMP) for serotype determination

    Toxicities, kinetics and degradation pathways investigation of ciprofloxacin degradation using iron-mediated H\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e2\u3c/sub\u3e based advanced oxidation processes

    Get PDF
    © 2018 Institution of Chemical Engineers Ciprofloxacin (CIP) is a widespread emerging water pollutant and thus its removal from aquatic environment is vital. The use of Fe3+/H2O2 and Fe2+/H2O2 resulted in 38 and 64% removal of CIP (8.0 ppm), respectively, within 80 min reaction time (pH 5.8, [H2O2]0 = 80 ppm, and [iron]0 = 20 ppm). Low pH, high temperature, high dose of H2O2 and Fe2+, and low CIP concentration facilitated removal of CIP. The radical scavenger studies proved in situ generated [rad]OH to be involved primarily in the removal of CIP. The effect of temperature was used to estimate enthalpy and activation energies of the removal of CIP. At 800 min reaction time, the Fe2+/H2O2 resulted in 54% mineralization of CIP using 16.0 ppm [CIP]0, 320.0 ppm [H2O2]0, and 40.0 ppm [Fe2+]0. The potential degradation pathways of CIP established from the degradation of CIP by [rad]OH and products evolved was found to be initiated at C6 through the loss of fluoride ion. The acute and chronic toxicities of CIP and its degradation products were estimated with the final product found to be non-toxic. The results suggest that Fe2+/H2O2-mediated AOPs have high potential for degradation as well as toxicity elimination of CIP and its degradation products

    Fabrication and Magnetic Properties of Sn-Doped ZnO Microstructures via Hydrothermal Method

    No full text
    Pure zinc oxide (ZnO) and Sn-doped ZnO hexagonal sheets were synthesized by template free hydrothermal growth mechanism with controlled morphology by using zinc acetate dihydrate (Zn(CH3COO)(2)center dot 2H(2)O), tin chloride pentahydrate (SnCl2 center dot 5H(2)O), Polyvinylpyrrolidone (PVP) and H2O as precursors. The structural, physical, chemical, and magnetic characteristics were investigated by X-ray diffraction, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy and alternating gradient magnetometer (AGM), respectively. The average crystalline size of hexagonal phase of ZnO sheets was calculated to be about 34 nm from XRD patterns. Energy dispersive spectroscopy provided the compositional analysis of pure and Sn-doped ZnO. Room temperature ferromagnetism (RTFM) was observed by AGM for pure and Sn-doped ZnO hexagonal plates. RTFM increases monotonically for Sn doping and reaches maximum saturation magnetization 0.045 emu/g for 3% Sn-doped ZnO

    Solid lipid nanoparticles for enhanced oral absorption: A review

    No full text
    corecore