58 research outputs found

    Changing nutrient cycling in Lake Baikal, the world's oldest lake

    Get PDF
    Lake Baikal, lying in a rift zone in southeastern Siberia, is the world's oldest, deepest, and most voluminous lake that began to form over 30 million years ago. Cited as the "most outstanding example of a freshwater ecosystem" and designated a World Heritage Site in 1996 due to its high level of endemicity, the lake and its ecosystem have become increasingly threatened by both climate change and anthropogenic disturbance. Here, we present a record of nutrient cycling in the lake, derived from the silicon isotope composition of diatoms, which dominate aquatic primary productivity. Using historical records from the region, we assess the extent to which natural and anthropogenic factors have altered biogeochemical cycling in the lake over the last 2,000 y. We show that rates of nutrient supply from deep waters to the photic zone have dramatically increased since the mid-19th century in response to changing wind dynamics, reduced ice cover, and their associated impact on limnological processes in the lake. With stressors linked to untreated sewage and catchment development also now impacting the near-shore region of Lake Baikal, the resilience of the lake's highly endemic ecosystem to ongoing and future disturbance is increasingly uncertain

    Tectonic interleaving along the Main Central Thrust, Sikkim Himalaya

    Get PDF
    Geochemical and geochronological analyses provide quantitative evidence about the origin, development and motion along ductile faults, where kinematic structures have been overprinted. The Main Central Thrust is a key structure in the Himalaya that accommodated substantial amounts of the India–Asia convergence. This structure juxtaposes two isotopically distinct rock packages across a zone of ductile deformation. Structural analysis, whole-rock Nd isotopes, and U–Pb zircon geochronology reveal that the hanging wall is characterized by detrital zircon peaks at c. 800–1000 Ma, 1500–1700 Ma and 2300–2500 Ma and an εNd(0) signature of –18.3 to –12.1, and is intruded by c. 800 Ma and c. 500–600 Ma granites. In contrast, the footwall has a prominent detrital zircon peak at c. 1800–1900 Ma, with older populations spanning 1900–3600 Ma, and an εNd(0) signature of –27.7 to –23.4, intruded by c. 1830 Ma granites. The data reveal a c. 5 km thick zone of tectonic imbrication, where isotopically out-of-sequence packages are interleaved. The rocks became imbricated as the once proximal and distal rocks of the Indian margin were juxtaposed by Cenozoic movement along the Main Central Thrust. Geochronological and isotopic characterization allows for correlation along the Himalayan orogen and could be applied to other cryptic ductile shear zones

    A calcite reference material for LA-ICP-MS U-Pb geochronology

    Get PDF
    U-Pb dating of calcite is an emerging but rapidly growing field of application in geochronology with great potential to inform problems in landscape, basin and mountain belt evolution, through age determination of diagenetic cements, vein mineralisation and geological formations difficult to date otherwise. In this brief, we present isotope dilution U-Pb isotope measurements on a sample of calcite (WC-1) that has been and will continue to be used as a reference material for in-situ U-Pb Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) dating, and which is suitable to be distributed to the geochronological community. We present in-situ measurements using LA-ICP-MS to demonstrate the suitability of WC-1 for use as a U-Pb dating reference material, in spite of it not being isotopically homogeneous. The WC-1 calcite sample is 254.4 ± 6.4 Ma old, and comprised of 85 to 98% radiogenic lead. It presents a suitable reference material that can facilitate dating of calcite ranging in age from Precambrian to late Neogene age

    Constraining modern day silicon cycling in Lake Baikal

    Get PDF
    Constraining the continental silicon cycle is a key requirement in attempts to understand both nutrient fluxes to the ocean and linkages between silicon and carbon cycling over different timescales. Silicon isotope data of dissolved silica (δ30SiDSi) are presented here from Lake Baikal and its catchment in central Siberia. As well as being the world's oldest and voluminous lake, Lake Baikal lies within the seventh largest drainage basin in the world and exports significant amounts of freshwater into the Arctic Ocean. Data from river waters accounting for c. 92% of annual river inflow to the lake suggest no seasonal alteration or anthropogenic impact on river δ30SiDSi composition. The absence of a change in δ30SiDSi within the Selenga Delta, through which 62% of riverine flow passes, suggest a net balance between biogenic uptake and dissolution in this system. A key feature of this study is the use of δ30SiDSi to examine seasonal and spatial variations in DSi utilisation and export across the lake. Using an open system model against deep water δ30SiDSi values from the lake, we estimate that 20-24% of DSi entering Lake Baikal is exported into the sediment record. Whilst highlighting the impact that lakes may have upon the sequestration of continental DSi, mixed layer δ30SiDSi values from 2003 and 2013 show significant spatial variability in the magnitude of spring bloom nutrient utilisation with lower rates in the north relative to south basin

    Detrital zircon age and provenance constraints on late Paleozoic ice-sheet growth and dynamics in Western and Central Australia

    Get PDF
    U–Pb dating and Hf-isotope provenance analysis of detrital zircons from the glaciogenic lower Permian Grant Group of the Canning Basin indicate sources principally from basement terranes in central Australia, with subordinate components from terranes to the south and north. Integrating these data with field outcrop and subsurface evidence for ice sheets, including glacial valleys and striated pavements along the southern and northern margins of the basin, suggests that continental ice sheets extended over several Precambrian upland areas of western and central Australia during the late Paleozoic ice age (LPIA). The youngest zircons constrain the maximum age for contemporaneous ice sheet development to the late Carboniferous (Kasimovian), whereas palynology provides a minimum age of early Permian (Asselian–Sakmarian). Considering the palynological age of the Grant Group within the context of regional and global climate proxies, the main phase of continental ice sheet growth was possibly in the Ghzelian–Asselian. The presence of ice sheets older than Kasimovian in western and central Australia remains difficult to prove given a regional gap in deposition possibly covering the mid-Bashkirian to early Ghzelian within the main depocentres and even larger along basin margins, and the poor evidence for older Carboniferous glacial facies. There is also no evidence for extensive glacial facies younger than mid-Sakmarian in this region as opposed to eastern Australia where the youngest regional glacial phase was Guadalupian

    Zircon U‐Pb Dating of a Lower Crustal Shear Zone: A Case Study From the Northern Sector of the Ivrea‐Verbano Zone (Val Cannobina, Italy)

    Get PDF
    A geochronological study was performed on zircon grains from a middle‐lower crustal shear zone exposed in the northern sector of the Ivrea‐Verbano Zone (Southern Alps, Italy) for the first time. The shear zone developed at the boundary between mafic rocks of the External Gabbro unit and ultramafic rocks of the Amphibole Peridotite unit. It is ~10–20 m wide, can be followed along a NE strike for several kilometers, and consists of an anastomosing network of mylonites and ultramylonites. Zircon grains were studied in thin sections and as separates from three representative outcrops along the shear zone. Zircon grains are more abundant in the shear zone compared to wall rocks and are generally equant, rounded to subrounded with dimensions up to 500 μm. U‐Pb data are mainly discordant, and the apparent ²⁰⁶Pb/²³⁸U dates show a large variation from Permian to Jurassic. Isotopic data, combined with microstructural, morphological, and internal features of zircon, reveal an inherited age component and suggest partial zircon recrystallization under high‐temperature conditions during Late Triassic to Early Jurassic. High‐temperature deformation in the shear zone, at lower crustal levels, was coeval with amphibolite to greenschist facies mylonitic deformation at upper crustal levels and is inferred to be related to Mesozoic rifting processes at the Adriatic margin
    corecore