367 research outputs found

    Critical changes in hypothalamic gene networks in response to pancreatic cancer as found by single-cell RNA sequencing

    Get PDF
    OBJECTIVE: Cancer cachexia is a devastating chronic condition characterized by involuntary weight loss, muscle wasting, abnormal fat metabolism, anorexia, and fatigue. However, the molecular mechanisms underlying this syndrome remain poorly understood. In particular, the hypothalamus may play a central role in cachexia, given that it has direct access to peripheral signals because of its anatomical location and attenuated blood–brain barrier. Furthermore, this region has a critical role in regulating appetite and metabolism. METHODS: To provide a detailed analysis of the hypothalamic response to cachexia, we performed single-cell RNA-seq combined with RNA-seq of the medial basal hypothalamus (MBH) in a mouse model for pancreatic cancer. RESULTS: We found many cell type-specific changes, such as inflamed endothelial cells, stressed oligodendrocyes and both inflammatory and moderating microglia. Lcn2, a newly discovered hunger suppressing hormone, was the highest induced gene. Interestingly, cerebral treatment with LCN2 not only induced many of the observed molecular changes in cachexia but also affected gene expression in food-intake decreasing POMC neurons. In addition, we found that many of the cachexia-induced molecular changes found in the hypothalamus mimic those at the primary tumor site. CONCLUSION: Our data reveal that multiple cell types in the MBH are affected by tumor-derived factors or host factors that are induced by tumor growth, leading to a marked change in the microenvironment of neurons critical for behavioral, metabolic, and neuroendocrine outputs dysregulated during cachexia. The mechanistic insights provided in this study explain many of the clinical features of cachexia and will be useful for future therapeutic development

    Asthma Discordance in Twins Is Linked to Epigenetic Modifications of T Cells

    Get PDF
    T cells mediate the inflammatory responses observed in asthma among genetically susceptible individuals and have been suspected to be prone to epigenetic regulation. However, these relationships are not well established from past clinical studies that have had limited capacity to control for the effects of variable genetic predisposition and early environmental exposures. Relying on a cohort of monozygotic twins discordant for asthma we sought to determine if epigenetic modifications in T cells were associated with current asthma and explored whether such modifications were associated with second hand smoke exposures. Our study was conducted in a monozygotic twin cohort of adult twin pairs (n = 21) all discordant for asthma. Regulatory T cell (Treg) and effector T cell (Teff) subsets were assessed for levels of cellular function, protein expression, gene expression and CpG methylation within Forkhead box P3 (FOXP3) and interferon gamma-γ (IFNγ) loci. Comparisons by asthma and current report of exposure to second hand smoke were made. Treg from asthmatic discordant twins demonstrated decreased FOXP3 protein expression and impaired Treg function that was associated with increased levels of CpG methylation within the FOXP3 locus when compared to their non-asthmatic twin partner. In parallel, Teff from discordant asthmatic twins demonstrated increased methylation of the IFNγ locus, decreased IFNγ expression and reduced Teff function when compared to Teff from the non-asthmatic twin. Finally, report of current exposure to second hand smoke was associated with modifications in both Treg and Teff at the transcriptional level among asthmatics. The results of the current study provide evidence for differential function of T cell subsets in monozygotic twins discordant for asthma that are regulated by changes in DNA methylation. Our preliminary data suggest exposure to second hand smoke may augment the modified T cell responses associated with asthma

    PICH promotes sister chromatid disjunction and co-operates with topoisomerase II in mitosis

    Get PDF
    PICH is a SNF2 family DNA translocase that binds to ultra-fine DNA bridges (UFBs) in mitosis. Numerous roles for PICH have been proposed from protein depletion experiments, but a consensus has failed to emerge. Here, we report that deletion of PICH in avian cells causes chromosome structural abnormalities, and hypersensitivity to an inhibitor of Topoisomerase II (Topo II), ICRF-193. ICRF-193-treated PICH-/- cells undergo sister chromatid non-disjunction in anaphase, and frequently abort cytokinesis. PICH co-localises with Topo IIα on UFBs and at the ribosomal DNA locus, and the timely resolution of both structures depends on the ATPase activity of PICH. Purified PICH protein strongly stimulates the catalytic activity of Topo II in vitro. Consistent with this, a human PICH-/- cell line exhibits chromosome instability and chromosome condensation and decatenation defects similar to those of ICRF-193-treated cells. We propose that PICH and Topo II cooperate to prevent chromosome missegregation events in mitosis

    Order and Stochastic Dynamics in Drosophila Planar Cell Polarity

    Get PDF
    Cells in the wing blade of Drosophila melanogaster exhibit an in-plane polarization causing distal orientation of hairs. Establishment of the Planar Cell Polarity (PCP) involves intercellular interactions as well as a global orienting signal. Many of the genetic and molecular components underlying this process have been experimentally identified and a recently advanced system-level model has suggested that the observed mutant phenotypes can be understood in terms of intercellular interactions involving asymmetric localization of membrane bound proteins. Among key open questions in understanding the emergence of ordered polarization is the effect of stochasticity and the role of the global orienting signal. These issues relate closely to our understanding of ferromagnetism in physical systems. Here we pursue this analogy to understand the emergence of PCP order. To this end we develop a semi-phenomenological representation of the underlying molecular processes and define a “phase diagram” of the model which provides a global view of the dependence of the phenotype on parameters. We show that the dynamics of PCP has two regimes: rapid growth in the amplitude of local polarization followed by a slower process of alignment which progresses from small to large scales. We discuss the response of the tissue to various types of orienting signals and show that global PCP order can be achieved with a weak orienting signal provided that it acts during the early phase of the process. Finally we define and discuss some of the experimental predictions of the model

    Serrano (Sano) Functions with the Planar Cell Polarity Genes to Control Tracheal Tube Length

    Get PDF
    Epithelial tubes are the functional units of many organs, and proper tube geometry is crucial for organ function. Here, we characterize serrano (sano), a novel cytoplasmic protein that is apically enriched in several tube-forming epithelia in Drosophila, including the tracheal system. Loss of sano results in elongated tracheae, whereas Sano overexpression causes shortened tracheae with reduced apical boundaries. Sano overexpression during larval and pupal stages causes planar cell polarity (PCP) defects in several adult tissues. In Sano-overexpressing pupal wing cells, core PCP proteins are mislocalized and prehairs are misoriented; sano loss or overexpression in the eye disrupts ommatidial polarity and rotation. Importantly, Sano binds the PCP regulator Dishevelled (Dsh), and loss or ectopic expression of many known PCP proteins in the trachea gives rise to similar defects observed with loss or gain of sano, revealing a previously unrecognized role for PCP pathway components in tube size control

    Expression of Wnt gene family and frizzled receptors in head and neck squamous cell carcinomas

    Get PDF
    [Abstract] Genes of the Wnt and Frizzled class, expressed in HNSCC tissue and cell lines, have an established role in cell morphogenesis and differentiation, and also they have oncogenic properties. We studied Wnt and Fz genes as potential tumor-associated markers in HNSCC by qPCR. Expression levels of Wnt and Fz genes in 22 unique frozen samples from HNSCC were measured. We also assessed possible correlation between the expression levels obtained in cancer samples in relation to clinicopathologic outcome. Wnt-1 was not expressed in the majority of the HNSCC studied, whereas Wnt-5A was the most strongly expressed by the malignant tumors. Wnt-10B expression levels were related with higher grade of undifferentiation. Related to Fz genes, Fz-5 showed more expression levels in no-affectation of regional lymph nodes. Kaplan–Meier survival analyses suggest a reduced time of survival for low and high expression of Wnt-7A and Fz-5 mRNA, respectively. qPCR demonstrated that HNSCC express Wnt and Fz members, and suggested that Wnt and Fz signaling is activated in HNSCC cells

    Genetic and environmental influences on adult human height across birth cohorts from 1886 to 1994

    Get PDF
    Human height variation is determined by genetic and environmental factors, but it remains unclear whether their influences differ across birth-year cohorts. We conducted an individual-based pooled analysis of 40 twin cohorts including 143,390 complete twin pairs born 1886-1994. Although genetic variance showed a generally increasing trend across the birth-year cohorts, heritability estimates (0.69-0.84 in men and 0.53-0.78 in women) did not present any clear pattern of secular changes. Comparing geographic-cultural regions (Europe, North America and Australia, and East Asia), total height variance was greatest in North America and Australia and lowest in East Asia, but no clear pattern in the heritability estimates across the birth-year cohorts emerged. Our findings do not support the hypothesis that heritability of height is lower in populations with low living standards than in affluent populations, nor that heritability of height will increase within a population as living standards improve.Peer reviewe

    Genetic and environmental effects on body mass index from infancy to the onset of adulthood: an individual-based pooled analysis of 45 twin cohorts participating in the COllaborative project of Development of Anthropometrical measures in Twins (CODATwins) study

    Get PDF
    Background: Both genetic and environmental factors are known to affect body mass index (BMI), but detailed understanding of how their effects differ during childhood and adolescence is lacking. Objectives: We analyzed the genetic and environmental contributions to BMI variation from infancy to early adulthood and the ways they differ by sex and geographic regions representing high (North America and Australia), moderate (Europe), and low levels (East Asia) of obesogenic environments. Design: Data were available for 87,782 complete twin pairs from 0.5 to 19.5 y of age from 45 cohorts. Analyses were based on 383,092 BMI measurements. Variation in BMI was decomposed into genetic and environmental components through genetic structural equation modeling. Results: The variance of BMI increased from 5 y of age along with increasing mean BMI. The proportion of BMI variation explained by additive genetic factors was lowest at 4 y of age in boys (a2 = 0.42) and girls (a2 = 0.41) and then generally increased to 0.75 in both sexes at 19 y of age. This was because of a stronger influence of environmental factors shared by co-twins in midchildhood. After 15 y of age, the effect of shared environment was not observed. The sex-specific expression of genetic factors was seen in infancy but was most prominent at 13 y of age and older. The variance of BMI was highest in North America and Australia and lowest in East Asia, but the relative proportion of genetic variation to total variation remained roughly similar across different regions. Conclusions: Environmental factors shared by co-twins affect BMI in childhood, but little evidence for their contribution was found in late adolescence. Our results suggest that genetic factors play a major role in the variation of BMI in adolescence among populations of different ethnicities exposed to different environmental factors related to obesity

    The CODATwins Project : The Current Status and Recent Findings of COllaborative Project of Development of Anthropometrical Measures in Twins

    Get PDF
    The COllaborative project of Development of Anthropometrical measures in Twins (CODATwins) project is a large international collaborative effort to analyze individual-level phenotype data from twins in multiple cohorts from different environments. The main objective is to study factors that modify genetic and environmental variation of height, body mass index (BMI, kg/m(2)) and size at birth, and additionally to address other research questions such as long-term consequences of birth size. The project started in 2013 and is open to all twin projects in the world having height and weight measures on twins with information on zygosity. Thus far, 54 twin projects from 24 countries have provided individual-level data. The CODATwins database includes 489,981 twin individuals (228,635 complete twin pairs). Since many twin cohorts have collected longitudinal data, there is a total of 1,049,785 height and weight observations. For many cohorts, we also have information on birth weight and length, own smoking behavior and own or parental education. We found that the heritability estimates of height and BMI systematically changed from infancy to old age. Remarkably, only minor differences in the heritability estimates were found across cultural-geographic regions, measurement time and birth cohort for height and BMI. In addition to genetic epidemiological studies, we looked at associations of height and BMI with education, birth weight and smoking status. Within-family analyses examined differences within same-sex and opposite-sex dizygotic twins in birth size and later development. The CODATwins project demonstrates the feasibility and value of international collaboration to address gene-by-exposure interactions that require large sample sizes and address the effects of different exposures across time, geographical regions and socioeconomic status.Peer reviewe
    corecore