907 research outputs found

    Evaluation of nephroprotective effect of Bryonia lacinosa on streptozotocin induced diabetic nephropathy in rats

    Get PDF
    Background: Ayurvedic literature indicated use of Bryonia laciniosa (BL) for metabolic abnormalities. However only one study evaluated Bryonia laciniosa seed ethanolic extract in streptozotocin-induced diabetes in rats and was found to have anti-hyperglycemic and anti-hyperlipidemic effects. The authors looked at the renal function test in addition and found that it prevents deterioration of renal function in rats. Hence it was interesting to find if Bryonia laciniosa had any protective action in streptozotocin induced diabetic nephropathy in rats.Methods: Streptozotocin induced diabetic nephropathy model in wistar rats was standardised in phase 1. In phase 2 animals were divided into 4 groups and diabetic nephropathy was induce with STZ. Vehicle Control group animals received CMC 0.5%, Positive control group received enalapril 5 mg/kg, Test group 1 received ethanolic extract of Bryonia laciniosa (EEBL) 250 mg/kg and Test group 2 received (EEBL) 500 mg/kg from 3rd day onwards till 6 weeks. Renal function, morphology and histopthological changes were evaluated.Results: There was a significant reduction (p <0.001) in the serum creatinine and BUN in both low and high dose EEBL groups. High dose of EEBL lowered raised MDA values significantly (p<0.001) and raised the GSH values (p<0.001). On histopathology, the high dose EEBL reversed nephropathic changes which were equivalent to enalapril.Conclusions: Bryonia lacinosa in high doses 500 mg/kg has potential to reverse diabetic nephropathic changes induced in wistar rats

    Intense blue-emitting Ca5Al8O14 : Eu phosphor for mercury free lamp

    Get PDF
    The calcium aluminates doped with Eu ions, Ca5Al8O14 : Eu, phosphors are prepared by the combustion method. The formation of crystalline aluminates was confirmed by X-ray diffraction pattern. The prepared phosphors were characterized by SEM, TGA, DTA, particle size analyzer and Photoluminescence (PL) techniques. From the UV-excited luminescence spectra it was found that the Eu ions acts as a luminescent centre with luminescence at the blue (λmax = 470 nm) region due to 4f 65d1 → 4f 7 transition. The excitation spectra show the broad band at 355 nm wavelength (λem = 470 nm). The excitation 355 nm is a mercury free excitation and therefore Ca5Al8O14 : Eu may be useful for the solid state lighting phosphor in lamp industry.Intense blue-emitting Ca5Al8O14 : Eu phosphor for mercury free lamp Abhay D Deshmukh1*, S J Dhoble1, S V Godbole2, M K Bhide2 and D R Peshwe3 1Kamla Nehru College, Sakkardara Square, Nagpur-440 009, Maharashtra, India 2Spectroscopy Section, Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India 3Department of Metallurgical and Materials Engineering, VNIT, Nagpur-440 011, Maharashtra, India E-mail : [email protected] Nehru College, Sakkardara Square, Nagpur-440 009, Maharashtra, India 2Spectroscopy Section, Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India 3Department of Metallurgical and Materials Engineering, VNIT, Nagpur-440 011, Maharashtra, Indi

    Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex

    Get PDF
    GABA neurons of the cerebral cortex and other telencephalic structures are produced in the basal forebrain and migrate to their final destinations during the embryonic period. The embryonic basal forebrain is enriched in dopamine and its receptors, creating a favorable environment for dopamine to influence GABA neuron migration. However, whether dopamine receptor activation can influence GABA neuron migration is not known. We show that dopamine D1 receptor activation promotes and D2 receptor activation decreases GABA neuron migration from the medial and caudal ganglionic eminences to the cerebral cortex in slice preparations of embryonic mouse forebrain. Slice preparations from D1 or D2 receptor knock-out mouse embryos confirm the findings. In addition, D1 receptor electroporation into cells of the basal forebrain and pharmacological activation of the receptor promote migration of the electroporated cells to the cerebral cortex. Analysis of GABA neuron numbers in the cerebral wall of the dopamine receptor knock-out mouse embryos further confirmed the effects of dopamine receptor activation on GABA neuron migration. Finally, dopamine receptor activation mobilizes striatal neuronal cytoskeleton in a manner consistent with the effects on neuronal migration. These data show that impairing the physiological balance between D1 and D2 receptors can alter GABA neuron migration from the basal forebrain to the cerebral cortex. The intimate relationship between dopamine and GABA neuron development revealed here may offer novel insights into developmental disorders such as schizophrenia, attention deficit or autism, and fetal cocaine exposure, all of which are associated with dopamine and GABA imbalance

    Carbon Nanotubes by a CVD Method. Part II: Formation of Nanotubes from (Mg, Fe)O Catalysts

    Get PDF
    The aim of this paper is to study the formation of carbon nanotubes (CNTs) from different Fe/MgO oxide powders that were prepared by combustion synthesis and characterized in detail in a companion paper. Depending on the synthesis conditions, several iron species are present in the starting oxides including Fe2+ ions, octahedral Fe3+ ions, Fe3+ clusters, and MgFe2O4-like nanoparticles. Upon reduction during heating at 5 °C/min up to 1000 °C in H2/CH4 of the oxide powders, the octahedral Fe3+ ions tend to form Fe2+ ions, which are not likely to be reduced to metallic iron whereas the MgFe2O4-like particles are directly reduced to metallic iron. The reduced phases are R-Fe, Fe3C, and ç-Fe-C. Fe3C appears as the postreaction phase involved in the formation of carbon filaments (CNTs and thick carbon nanofibers). Thick carbon nanofibers are formed from catalyst particles originating from poorly dispersed species (Fe3+ clusters and MgFe2O4-like particles). The nanofiber outer diameter is determined by the particle size. The reduction of the iron ions and clusters that are well dispersed in the MgO lattice leads to small catalytic particles (<5 nm), which tend to form SWNTS and DWNTs with an inner diameter close to 2 nm. Well-dispersed MgFe2O4-like particles can also be reduced to small metal particles with a narrow size distribution, producing SWNTs and DWNTs. The present results will help in tailoring oxide precursors for the controlled formation of CNTs

    Fe/Co Alloys for the Catalytic Chemical Vapor Deposition Synthesis of Single- and Double-Walled Carbon Nanotubes (CNTs). 1. The CNT−Fe/Co−MgO System

    Get PDF
    Mg0.90FexCoyO (x + y ) 0.1) solid solutions were synthesized by the ureic combustion route. Upon reduction at 1000 °C in H2-CH4 of these powders, Fe/Co alloy nanoparticles are formed, which are involved in the formation of carbon nanotubes, which are mostly single and double walled, with an average diameter close to 2.5 nm. Characterizations of the materials are performed using 57Fe Mo¨ssbauer spectroscopy and electron microscopy, and a well-established macroscopic method, based on specific-surface-area measurements, was applied to quantify the carbon quality and the nanotubes quantity. A detailed investigation of the Fe/Co alloys’ formation and composition is reported. An increasing fraction of Co2+ ions hinders the dissolution of iron in the MgO lattice and favors the formation of MgFe2O4-like particles in the oxide powders. Upon reduction, these particles form R-Fe/Co particles with a size and composition (close to Fe0.50Co0.50) adequate for the increased production of carbon nanotubes. However, larger particles are also produced resulting in the formation of undesirable carbon species. The highest CNT quantity and carbon quality are eventually obtained upon reduction of the iron-free Mg0.90Co0.10O solid solution, in the absence of clusters of metal ions in the starting material. Introduction Catalyti

    Carbon Nanotubes by a CVD Method. Part I: Synthesis and Characterization of the (Mg, Fe)O Catalysts

    Get PDF
    The controlled synthesis of carbon nanotubes by chemical vapor deposition requires tailored and wellcharacterized catalyst materials. We attempted to synthesize Mg1-xFexO oxide solid solutions by the combustion route, with the aim of performing a detailed investigation of the influence of the synthesis conditions (nitrate/urea ratio and the iron content) on the valency and distribution of the iron ions and phases. Notably, characterization of the catalyst materials is performed using 57Fe Mo¨ssbauer spectroscopy, X-ray diffraction, and electron microscopy. Several iron species are detected including Fe2+ ions substituting for Mg2+ in the MgO lattice, Fe3+ ions dispersed in the octahedral sites of MgO, different clusters of Fe3+ ions, and MgFe2O4-like nanoparticles. The dispersion of these species and the microstructure of the oxides are discussed. Powders markedly different from one another that may serve as model systems for further study are identified. The formation of carbon nanotubes upon reduction in a H2/CH4 gas atmosphere of the selected powders is reported in a companion paper

    Behavioral and neuroanatomical consequences of cell-type specific loss of dopamine D2 receptors in the mouse cerebral cortex

    Get PDF
    Developmental dysregulation of dopamine D2 receptors (D2Rs) alters neuronal migration, differentiation, and behavior and contributes to the psychopathology of neurological and psychiatric disorders. The current study is aimed at identifying how cell-specific loss of D2Rs in the cerebral cortex may impact neurobehavioral and cellular development, in order to better understand the roles of this receptor in cortical circuit formation and brain disorders. We deleted D2R from developing cortical GABAergic interneurons (Nkx2.1-Cre) or from developing telencephalic glutamatergic neurons (Emx1-Cre). Conditional knockouts (cKO) from both lines, Drd2fl/fl, Nkx2.1-Cre+ (referred to as GABA-D2R-cKO mice) or Drd2fl/fl, Emx1-Cre+ (referred to as Glu-D2R-cKO mice), exhibited no differences in simple tests of anxiety-related or depression-related behaviors, or spatial or nonspatial working memory. Both GABA-D2R-cKO and Glu-D2R-cKO mice also had normal basal locomotor activity, but GABA-D2R-cKO mice expressed blunted locomotor responses to the psychotomimetic drug MK-801. GABA-D2R-cKO mice exhibited improved motor coordination on a rotarod whereas Glu-D2R-cKO mice were normal. GABA-D2R-cKO mice also exhibited spatial learning deficits without changes in reversal learning on a Barnes maze. At the cellular level, we observed an increase in PV+ cells in the frontal cortex of GABA-D2R-cKO mice and no noticeable changes in Glu-D2R-cKO mice. These data point toward unique and distinct roles for D2Rs within excitatory and inhibitory neurons in the regulation of behavior and interneuron development, and suggest that location-biased D2R pharmacology may be clinically advantageous to achieve higher efficacy and help avoid unwanted effects.Fil: Lee, Gloria S.. Florida State University; Estados UnidosFil: Graham, Devon L.. Florida State University; Estados UnidosFil: Noble, Brenda L.. Florida State University; Estados UnidosFil: Trammell, Taylor S.. Florida State University; Estados UnidosFil: McCarthy, Deirdre M.. Florida State University; Estados UnidosFil: Anderson, Lisa R.. Florida State University; Estados UnidosFil: Rubinstein, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Bhide, Pradeep G.. Florida State University; Estados UnidosFil: Stanwood, Gregg D.. Florida State University; Estados Unido

    Unraveling the Steric Link to Copper Precursor Decomposition: A Multi-Faceted Study for the Printing of Flexible Electronics

    Get PDF
    The field of printed electronics strives for lower processing temperatures to move toward flexible substrates that have vast potential: from wearable medical devices to animal tagging. Typically, ink formulations are optimized using mass screening and elimination of failures; as such, there are no comprehensive studies on the fundamental chemistry at play. Herein, findings which describe the steric link to decomposition profile: combining density functional theory, crystallography, thermal decomposition, mass spectrometry, and inkjet printing, are reported. Through the reaction of copper(II) formate with excess alkanolamines of varying steric bulk, tris-co-ordinated copper precursor ions: "[CuL3 ]," each with a formate counter-ion (1-3) are isolated and their thermal decomposition mass spectrometry profiles are collected to assess their suitability for use in inks (I1-3 ). Spin coating and inkjet printing of I1,2 provides an easily up-scalable method toward the deposition of highly conductive copper device interconnects (ρ = 4.7-5.3 × 10-7 Ω m; ≈30% bulk) onto paper and polyimide substrates and forms functioning circuits that can power light-emitting diodes. The connection among ligand bulk, coordination number, and improved decomposition profile supports fundamental understanding which will direct future design

    Animal board invited review: advances in proteomics for animal and food sciences

    Get PDF
    Animal production and health (APH) is an important sector in the world economy, representing a large proportion of the budget of all member states in the European Union and in other continents. APH is a highly competitive sector with a strong emphasis on innovation and, albeit with country to country variations, on scientific research. Proteomics (the study of all proteins present in a given tissue or fluid - i.e. the proteome) has an enormous potential when applied to APH. Nevertheless, for a variety of reasons and in contrast to disciplines such as plant sciences or human biomedicine, such potential is only now being tapped. To counter such limited usage, 6 years ago we created a consortium dedicated to the applications of Proteomics to APH, specifically in the form of a Cooperation in Science and Technology (COST) Action, termed FA1002 - Proteomics in Farm Animals: www.cost-faproteomics.org. In 4 years, the consortium quickly enlarged to a total of 31 countries in Europe, as well as Israel, Argentina, Australia and New Zealand. This article has a triple purpose. First, we aim to provide clear examples on the applications and benefits of the use of proteomics in all aspects related to APH. Second, we provide insights and possibilities on the new trends and objectives for APH proteomics applications and technologies for the years to come. Finally, we provide an overview and balance of the major activities and accomplishments of the COST Action on Farm Animal Proteomics. These include activities such as the organization of seminars, workshops and major scientific conferences, organization of summer schools, financing Short-Term Scientific Missions (STSMs) and the generation of scientific literature. Overall, the Action has attained all of the proposed objectives and has made considerable difference by putting proteomics on the global map for animal and veterinary researchers in general and by contributing significantly to reduce the East-West and North-South gaps existing in the European farm animal research. Future activities of significance in the field of scientific research, involving members of the action, as well as others, will likely be established in the future.European Science Foundation (Brussels, Belgium)info:eu-repo/semantics/publishedVersio
    corecore