20,320 research outputs found
Optical surface modes in the presence of nonlinearity and disorder
We investigate numerically the effect of the competition of disorder,
nonlinearity, and boundaries on the Anderson localization of light waves in
finite-size, one-dimensional waveguide arrays. Using the discrete Anderson -
nonlinear Schr\"odinger equation, the propagation of the mode amplitudes up to
some finite distance is monitored. The analysis is based on the calculated
localization length and the participation number, two standard measures for the
statistical description of Anderson localization. For relatively weak disorder
and nonlinearity, a higher disorder strength is required to achieve the same
degree of localization at the edge than in the interior of the array, in
agreement with recent experimental observations in the linear regime. However,
for relatively strong disorder and/or nonlinearity, this behavior is reversed
and it is now easier to localize an excitation at the edge than in the
interior.Comment: 5 double-column pages, 7 figures, submitted for publicatio
Bakhtiari, Leskinen and Torma Reply
This is a Reply to: Comment on "Spectral Signatures of the
Fulde-Ferrell-Larkin-Ovchinnikov Order Parameter in One-Dimensional Optical
Lattices" R. A. Molina J. Dukelksy, and P. Schmitteckert, Phys. Rev. Lett. 102,
168901 (2009)Comment: 1 page, published versio
Frequency and damping evolution during experimental seismic response of civil engineering structures
The results of the seismic tests on several reinforced-concrete shear walls and a four-storey frame are analysed in this paper. Each specimen was submitted to the action of a horizontal accelerogram, with successive growing amplitudes, using the pseudodynamic method. An analysis of the results allows knowing the evolution of the eigen frequency and damping ratio during the earthquakes thanks to an identification method working in the time domain. The method is formulated as a spatial model in which the stiffness and damping matrices are directly identified from the experimental displacements, velocities and restoring forces. The obtained matrices are then combined with the theoretical mass in order to obtain the eigen frequencies, damping ratios and modes. Those parameters have a great relevance for the design of this type of structures
Optimization of soliton ratchets in inhomogeneous sine-Gordon systems
Unidirectional motion of solitons can take place, although the applied force
has zero average in time, when the spatial symmetry is broken by introducing a
potential , which consists of periodically repeated cells with each cell
containing an asymmetric array of strongly localized inhomogeneities at
positions . A collective coordinate approach shows that the positions,
heights and widths of the inhomogeneities (in that order) are the crucial
parameters so as to obtain an optimal effective potential that yields
a maximal average soliton velocity. essentially exhibits two
features: double peaks consisting of a positive and a negative peak, and long
flat regions between the double peaks. Such a potential can be obtained by
choosing inhomogeneities with opposite signs (e.g., microresistors and
microshorts in the case of long Josephson junctions) that are positioned close
to each other, while the distance between each peak pair is rather large. These
results of the collective variables theory are confirmed by full simulations
for the inhomogeneous sine-Gordon system
Inhomogeneous soliton ratchets under two ac forces
We extend our previous work on soliton ratchet devices [L. Morales-Molina et
al., Eur. Phys. J. B 37, 79 (2004)] to consider the joint effect of two ac
forces including non-harmonic drivings, as proposed for particle ratchets by
Savele'v et al. [Europhys. Lett. 67}, 179 (2004); Phys. Rev. E {\bf 70} 066109
(2004)]. Current reversals due to the interplay between the phases, frequencies
and amplitudes of the harmonics are obtained. An analysis of the effect of the
damping coefficient on the dynamics is presented. We show that solitons give
rise to non-trivial differences in the phenomenology reported for particle
systems that arise from their extended character. A comparison with soliton
ratchets in homogeneous systems with biharmonic forces is also presented. This
ratchet device may be an ideal candidate for Josephson junction ratchets with
intrinsic large damping
Ratchet behavior in nonlinear Klein-Gordon systems with point-like inhomogeneities
We investigate the ratchet dynamics of nonlinear Klein-Gordon kinks in a
periodic, asymmetric lattice of point-like inhomogeneities. We explain the
underlying rectification mechanism within a collective coordinate framework,
which shows that such system behaves as a rocking ratchet for point particles.
Careful attention is given to the kink width dynamics and its role in the
transport. We also analyze the robustness of our kink rocking ratchet in the
presence of noise. We show that the noise activates unidirectional motion in a
parameter range where such motion is not observed in the noiseless case. This
is subsequently corroborated by the collective variable theory. An explanation
for this new phenomenom is given
Justifications-on-demand as a device to promote shifts of attention associated with relational thinking in elementary arithmetic
Student responses to arithmetical questions that can be solved by using arithmetical structure can serve to reveal the extent and nature of relational, as opposed to computational thinking. Here, student responses to probes which require them to justify-on-demand are analysed using a conceptual framework which highlights distinctions between different forms of attention. We analyse a number of actions observed in students in terms of forms of attention and shifts between them: in the short-term (in the moment), medium-term (over several tasks), and long-term (over a year). The main factors conditioning students´ attention and its movement are identified and some didactical consequences are proposed
Evaluation of a Local Fault Detection Algorithm for HVDC Systems
A great increase in the amount of energy generated from clean and renewable sources integrated in the electric power system is expected worldwide in the coming years. High Voltage Direct Current (HVDC) systems are seen as a promising alternative to the traditional Alternating Current (AC) systems for the expansion of the electric power system. However, to achieve this vision, there are some remaining challenges regarding HVDC systems which need to be solved. One of the main challenges is related to fault detection and location in HVDC grids. This paper reviews the main protection algorithms available and presents the evaluation of a local fault detection algorithm for DC faults in a multi-terminal Voltage Source Conversion (VSC) based HVDC grid. The paper analyses the influence of the DC voltage sampling frequency and the cable length in the performance of the algorithm. © 2019, European Association for the Development of Renewable Energy, Environment and Power Quality (EA4EPQ).The authors thank the support from the Spanish Ministry of Economy, Industry and Competitiveness (project ENE2016-79145-R AEI/FEDER, UE) and GISEL research group IT1083-16), as well as from the University of the Basque Country UPV/EHU (research group funding PPG17/23)
Oxidative capacity of the Mexico City atmosphere ? Part 1: A radical source perspective
International audienceA detailed analysis of OH, HO2 and RO2 radical sources is presented for the near field photochemical regime inside the Mexico City Metropolitan Area (MCMA). During spring of 2003 (MCMA-2003 field campaign) an extensive set of measurements was collected to quantify time resolved ROx (sum of OH, HO2, RO2) radical production rates from day- and nighttime radical sources. The Master Chemical Mechanism (MCMv3.1) was constrained by measurements of (1) concentration time-profiles of photosensitive radical precursors, i.e., nitrous acid (HONO), formaldehyde (HCHO), ozone (O3), glyoxal (CHOCHO), and other oxygenated volatile organic compounds (OVOCs); (2) respective photolysis-frequencies (J-values); (3) concentration time-profiles of alkanes, alkenes, and aromatic VOCs (103 compound are treated) and oxidants, i.e., OH- and NO3 radicals, O3; and (4) NO, NO2, meteorological and other parameters. The ROx production rate was calculated directly from these observations; MCM was used to estimate further ROx production from unconstrained sources, and express overall ROx production as OH-equivalents (i.e., taking into account the propagation efficiencies of RO2 and HO2 radicals into OH radicals). Daytime radical production is found to be about 10-25 times higher than at night; it does not track the abundance of sunlight. 12-h average daytime contributions of individual sources are: HCHO and O3 photolysis, each about 20%; O3/alkene reactions and HONO photolysis, each about 15%; unmeasured sources about 30%. While the direct contribution of O3/alkene reactions appears to be moderately small, source-apportionment of ambient HCHO and HONO identifies O3/alkene reactions as being largely responsible for jump-starting photochemistry about one hour after sunrise. The peak radical production is found to be higher than in any other urban influenced environment studied to date; further, differences exist in the timing of radical production. Our measurements and analysis comprise a database that enables testing of the representation of radical sources in photochemical models. Since the photochemical processing of pollutants is radical-limited in the MCMA, our analysis identifies the drivers for such processing. Three pathways are identified by which reductions in VOC emissions induce reductions in peak concentrations of secondary pollutants, such as O3 and secondary organic aerosol (SOA)
- …