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We investigate the ratchet dynamics of nonlinear Klein-Gordon kinks in a periodic, asymmetric lattice of
pointlike inhomogeneities. We explain the underlying rectification mechanism within a collective coordinate
framework, which shows that such a system behaves as a rocking ratchet for point particles. Careful attention
is given to the kink width dynamics and its role in the transport. We also analyze the robustness of our kink
rocking ratchet in the presence of noise. We show that the noise activates unidirectional motion in a parameter
range where such motion is not observed in the noiseless case. This is subsequently corroborated by the
collective variable theory. An explanation for this phenomenon is given.
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I. INTRODUCTION

The study of transport mechanisms at the mesoscale level
is of great importance nowadays. Specifically, the so-called
ratchet systems have been shown to be proper candidates for
explaining unidirectional motion in biological systems �1�,
and have important physical applications for nano- and mi-
croscale technologies �2–4�. Many of these models have
been developed in the simple picture of pointlike particles
�5–7� �see the reviews �8,9� for details�. This scenario has
been subsequently generalized to spatially extended systems
�10–12�, where much attention has been paid to situations
where the net motion arises through time-symmetry breaking
�13,14�. This kind of ratchet phenomenon has been recently
observed in long Josephson junction �LJJ� devices �15�. An-
other possibility that has been considered in the literature is
that of a nonlinear Klein-Gordon system where the on-site
potential is ratchetlike �16�. Notwithstanding, to our knowl-
edge the case of spatial-symmetry breaking by inhomogene-
ities has not been studied in depth. One such study has been
done by Carapella and Costabile who used an inhomoge-
neous magnetic field to create an effective inhomogeneous
junction profile for propagation of fluxons of �17�. Recently
an alternative for the generation of motion for extended sys-
tems with a disorder in the chain has been proposed �18�. In
this procedure the ratchet device is designed from a lattice of
pointlike inhomogeneities. For this system, net motion arises
from the interplay between disorder and nonlinearity of the
nonlinear systems �19�.

In this paper we elaborate on the preliminary results re-
ported in �18�. Our aim is to carry out an in-depth analysis of
the system, including a careful comparison to related point-

like ratchets �20� and an extension of our results, originally
obtained for the sine-Gordon �SG� model, to other nonlinear
Klein-Gordon models such as the �4 equation. Additional
motivation for this work arises from research on models of
energy propagation along microtubule filaments inside the
cells �21�. This application is specially interesting in view of
the possible connection with the dynamics of transport in
molecular motors in biological systems, with features similar
to those of solitons as extended objects. In this context, the
present work sheds light on the role played by the length
scale competition between the pointlike inhomogeneities
�disorder� and the kinks in the transport dynamics. For this
purpose, we use the framework of collective coordinates
�CCs� in order to gain insight into the cause of the motion
and the degrees of freedom that take part in it. Emphasis will
be given to the kink width oscillations and their role in the
transport properties. Indeed, in general, the width of the non-
linear topological excitations is crucial for the movement of
these coherent excitations. The coupling between the trans-
lational and kink width degrees is such that motion takes
place �14�. In particular, in the present work we will see that
the oscillation range of the kink width is determined by the
interplay with the inhomogeneities. An additional, relevant
issue is the analysis of the motion dynamics under thermal
fluctuations. In ratchets, the noise is an important source of
energy and, for some biological systems, it is regarded as the
main cause of transport. Here we will consider the robustness
of our rocking ratchet system under thermal fluctuations. In
this case, activation of unidirectional motion was observed
for a certain range of frequencies in the simulations as well
as in the CCs.

In order to achieve the above mentioned goals, our paper
is organized as follows. In Sec. II we formulate the basis for
the ratchet device and explain the origin and physical reasons
for the rectification process. The discussion in the CC frame-
work is devoted to the length scale competition between the
inhomogeneities and the kink width, and its influence on the
motion dynamics. In the same context, we establish an anal-
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ogy with a simple model used for describing unidirectional
motion in molecular motors �20�, pointing out the relevant
role of the kink width for the ratchet dynamics and its appli-
cation in biological systems. Subsequently, an analysis of the
efficiency in terms of the quantization of the transport is
done for the relevant parameters of our ratchet system, in-
cluding the interference effects among the inhomogeneities.
An example is given for the �4 model, not only for its known
rich internal dynamics reinforced by the presence of an in-
ternal mode, but also for its potential application to macro-
molecules �e.g., in transfer of energy in microtubules �21��.
Next, in Sec. III, we analyze the kink dynamics subject to
noise. In particular, the phenomenon of activation of motion
induced by noise is described. In order to explain this behav-
ior, different collective coordinate approaches are imple-
mented and thoroughly discussed. Finally, in the last section
we summarize the main contributions of our work and make
a discussion about the perspectives on this line. We include
appendixes where we detail the CC approaches for one and
two collective variables, extending the generalized traveling
wave ansatz �GTWA� to the case where inhomogeneities and
noise act together with damping and ac forces.

II. RATCHET MODEL AND TRANSPORT

A. Model

Kink dynamics in the presence of inhomogeneities can
exhibit different and interesting behaviors, depending on the
interplay between those inhomogeneities and the nonlinear-
ity �22,23� among other factors. The generation of net mo-
tion using a lattice of pointlike inhomogeneities is a good
example of such nontrivial phenomena �18�. Although in that
previous work the problem was discussed for the SG model,
it can be generalized in principle for any nonlinear Klein-
Gordon system. Therefore, aiming at that general viewpoint,
for our analysis we formulate the model in a general way as
follows:

�tt + ��t − �xx +
�Ũ

��
�1 + V�x�� = A sin��t + �0� , �1�

where Ũ��� is the potential for the nonlinear Klein-Gordon
equations and A sin��t+�0�� f�t� is an external ac force
whose parameters A, �, and �0 represent the amplitude, fre-
quency, and phase of the periodic force, respectively. The
parameter � is the damping coefficient. In particular, we will
focus on the �4 and SG models as specific examples; the

corresponding nonlinear potentials are Ũ���= 1
4 ��2−1�2 and

Ũ���= �1−cos����, respectively.
For our potential to exhibit a ratchetlike phenomenon, we

choose V�x� to be given by a periodically repeated unit cell,
formed by an asymmetric array of � functions �inhomogene-
ities�. The unit cell configuration, of length L is defined by
three inhomogeneities with the same intensity, the first one
located at the beginning of the cell, the second at distance a
from the first, and the third at distance b from the second.
The corresponding mathematical expression is

V�x� = ��
n

���x − x1 − nL� + ��x − x2 − nL� + ��x − x3 − nL��

�2�

where the parameters satisfy the following constraints:
a ,b ,c� l0 �static kink width in the absence of inhomogene-
ities�; a ,b�c with a�b, where L=a+b+c, a=x2−x1, b
=x3−x2, and c=L+x1−x3, with x1�x2�x3. For our study
we have taken ��0, where in the case of the SG model,
specifically for LJJs, the pointlike inhomogeneities represent
microshorts �24,25�. However, the same scheme of arrays of
pointlike inhomogeneities can be implemented for ��0,
where particularly for the SG model much work has been
done �26�. The choice of three inhomogeneities is inspired by
biological polymers like DNA where the existence of three
bases per codon seems to be the ideal configuration for the
occurrence of net transport �27�. In principle it is possible to
obtain unidirectional motion by using an array whose con-
figuration presents more than three inhomogeneities per unit
cell if the distances between the � functions are in the same
length scale as the kink width �otherwise, different behaviors
could arise, as obtained, e.g., in �23��. However, the inclu-
sion of more inhomogeneities diminishes the efficiency of
the transport as we will see below.

B. Simulations of the model

Contrary to the case of point particles, where motion
through pointlike inhomogeneities �� functions� is physically
meaningless, in our case we deal with kinks �extended ob-
jects� with a determined width. This is an intrinsic feature of
these nonlinear excitations, and correspondingly the compe-
tition between their width and the distances among the inho-
mogeneities is crucial for the kink motion. The interference
effects among the inhomogeneities �28� create an effective
potential for the motion of the kink center, the location of the
inhomogeneities determining the direction of motion. For the
particular configuration of three inhomogeneities per unit
cell, directional motion takes place only under the condition
a�b. In the top panel of Fig. 1, results of simulations of Eq.
�1� for the SG case with different values of a and b are
depicted. Such a picture shows that our ratchet device is a
generic rectifier. In addition, as in standard ratchet systems,
the directional motion of the kink center takes place only for
certain values of the amplitude of the ac force �see bottom
panel of Fig. 1�, a behavior that is dependent on the ac force
frequency. A more detailed picture of the dynamics of the
mean velocity for the SG kink center as a function of the ac
force amplitude for different frequencies can be found in
�18�.

We have restricted ourselves to the overdamped case by
taking �=1, where the inertial effects are small, reducing the
generation and propagation of phonons, and for which the
kink center moves on a tilted effective potential due to the
external ac force. This regime prevents also the dependence
on the initial conditions for the dynamics �29�. For the inte-
gration of Eq. �1� we have used a Strauss-Vázquez numerical
scheme �30� with free boundary conditions and spatial and
temporal steps 	x=0.1 and 	t=0.01, respectively. We have
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checked our results with different spatial steps 	x=0.05 and
0.02. The simulations were done for the spatial interval
�−30,150� with inhomogeneities arranged periodically ac-
cording to our unit cell in �0,120�.

We have used the following step representation for the �
function:

��x − xc� → �1/	x , 	x − xc	 � 	x/2,

0 otherwise.

 �3�

This representation is not unique but is presumably the sim-
plest form to implement in numerics �see, e.g., �22,28��.

C. Collective coordinate approach

In order to understand the dynamics of the kink center
different CC approaches have been implemented �18�. In this
previous work, it was shown that a 1CC approach is not

enough for the correct quantitative description of the results
of the simulations even considering possible relativistic ef-
fects for high values of ac the force. However, this approach
allows us to understand the underlying physics of this ratchet
system in the simplest way. On the other hand, satisfactory
agreement with the simulations was found by an improved,
2CC approach, which takes into account the kink width dy-
namics �18�. At this point we will proceed directly with the
discussion of the improved theory. The corresponding collec-
tive variable equations of two degrees of freedom for Eq. �1�
�see Appendix B, Eqs. �B21� and �B22� for D=0� can be
expressed as

M0l0
Ẍ

l
+ �M0l0

Ẋ

l
− M0l0

Ẋl̇

l2 = −
�U

�X
− qf�t� , �4�


M0l0
l̈

l
+ �
M0l0

l̇

l
+

1

2
M0l0

Ẋ2

l2 −
1

2

M0l0

l̇2

l2 = −
�Uint

�l
−

�U

�l
,

�5�

where X stands for the position of the kink center, l repre-
sents the kink width, the internal potential energy of the kink
is

Uint =
1

2
M0� l0

l
+

l

l0
� , �6�

and U�X , l� is an effective potential depending on the specific
equation one is dealing with. In particular, for the SG case
M0=8, l0=1, 
=�2 /12, q=2�, and the effective potential is
given by

U�X,l� = 2��
n
 1

cosh2��X − x1 − nL�/l�

+
1

cosh2��X − x2 − nL�/l�
+

1

cosh2��X − x3 − nL�/l�� .

�7�

As in the case of simulations we restrict ourselves to the
overdamped case �taking �=1�.

As we can see from the previous equations the kink width
dynamics is coupled to the motion of the center of the kink.
Therefore, changes in the kink width directly affect the trans-
lational motion. It is possible to observe, for instance, that
decreasing the kink width decreases the effective ac force,
making it necessary to increase the amplitude of the ac force
in order to compensate for this effect. This is an important
factor that explains in part the shift observed in the locations
of the windows of motion of the simulations with respect to
those obtained from the 1CC approach �see Fig. 1�b� in
�18��. Another relevant conclusion is the feedback between
the effective potential landscape and the kink width, deter-
mined in turn by the potential. In this fashion, the 2CC ap-
proach reflects the nontrivial interaction of the kink with the
inhomogeneities, which is otherwise known to exhibit many
counterintuitive phenomena �28�.

To deepen our understanding of the dynamics, let us look
into the oscillations of the kink width.

FIG. 1. Simulations of Eq. �1� for SG case; position of kink
center vs time. Top panel: Different arrays with the same amplitude
of the force A=0.35: x1=0.5, x2=1.8, x3=2.3 �a�b� �solid line�;
x1=0.5, x2=1.4, x3=2.3 �a=b� �dashed line�; x1=0.5, x2=1, x3

=2.3 �a�b� �dash-dotted line�. Bottom panel: For different ampli-
tudes of the ac force A=0.35 �solid line�, 0.45 �dashed line�, 0.50
�dash-dotted line� with the array x1=0.5, x2=1, x3=2.3. The other
parameters used are �=1, �=0.05, �=0.8, �0=�, and period L=4.
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A picture of the kink width oscillations versus kink center
position is shown in Fig. 2. As we can see, the agreement
with the CC approach is excellent, confirming the validity of
our predictions. The existence of loops is particularly inter-
esting; they arise as a consequence of the kink center motion
back and forth into the wells of the effective potential �see
Fig. 3�, i.e., describing half an oscillation before overcoming
the barrier.

Interestingly, another feature that stands out clearly is that
the oscillations are around a value different from l0=1, the
width of the unperturbed kink. Figure 2 shows that they take
place around l̄�0.8 and, furthermore, that l0 is not even
included in the range of oscillations. This phenomenon is the
result of the balance between two opposite effects. �a� On
one hand, the inclusion of inhomogeneities increases the po-
tential energy of the system. This fact is reflected in the
effective potential energy landscape Fig. 3. This picture
shows that when the kink width decreases, the potential en-
ergy decreases as well. Taking two points with the same
value for X but with different kink widths l, for example M
and O in the bottom panel of Fig. 3, we see this difference in
potential energy, i.e., UM �UO where lM � lO. Therefore, as
the tendency of the system is to go to the minimum of the
potential energy, the kink width will decrease. �b� On the
other hand, the kink internal potential energy Eq. �6� has a
minimum at l0, and hence the energy increases when the kink
width decreases �see Fig. 4 for l� l0�; notice that the first
term of this equation accounts for a repulsive interaction and

FIG. 2. SG case: Amplitude of the kink width versus kink cen-
ter. Simulation �solid line�; 2CC approach Eqs. �4� and �5� �dashed
line�. The parameters are �=0.1, A=0.44 for the array x1=0.5, x2

=1, x3=2.3, period L=4, and �=0.8. See text for a discussion of the
loop. Inset: enlargement of the loop indicated by an arrow in the
main figure. The motion of the kink center is indicated by numbered
arrows.

FIG. 3. �Color online� Top panel: 3D plot of
the effective potential Eq. �7�. Bottom panel:
Frontal view rotated by a small angle. The array
used is the same as in Fig. 2.
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the second is given by an attractive one. As a result of the
balance between �a� and �b�, a new minimum will appear for
the oscillations of the kink width. It is important to note that
the difference 	Uint of the internal potential energy for the
kink width l=0.7 with respect to the value l0=1 �inset of Fig.
4� is of the same order as the energy difference UM −UO
between the points mentioned before for the effective poten-
tial introduced by the inhomogeneities, in agreement with
this discussion.

D. Related point particle models

A problem closely related to our 2CC approach, given by
a point particle ratchet with two degrees of freedom, has
been studied in �20�. This model was designed for describing
molecular motor dynamics consisting of two particles joined
by a spring moving in a ratchet potential. The corresponding
equations of motion are given by

u̇1 = −
�V�u1�

�u1
−

�W�u2 − u1�
�u1

+ A sin��t� + �1�t� , �8�

u̇2 = −
�V�u2�

�u2
−

�W�u2 − u1�
�u2

+ A sin��t� + �2�t� , �9�

where u1 ,u2 represent the coordinates of the particles, V is a
sawtooth potential, and W is the internal potential energy.
Here �i with i=1,2 is Gaussian white noise. Ignoring the
noise terms and their influence on the net motion, we see that
the change of variables X= 1

2 �u1+u2� and l=u2−u1 casts the
system in a similar shape as Eqs. �4� and �5� in the over-
damped case, for which in good approximation the inertial
terms could be neglected. In such a context the variables X , l
can be interpreted as the mass center and elongation �dis-
tance between the particles�, respectively, and obviously they
resemble the variables mass center and width of the kink in
our system.

Notice that in both models we have an asymmetric poten-
tial. In our case it is given by Eq. �7�, which is asymmetric at
the CC level if the already mentioned conditions for the dis-
tances between the inhomogeneities are satisfied. In both

systems, there are internal potential energies that characterize
their elastic properties. In the model in �20�, the internal
potential is expressed through a harmonic function �in the
original variables�

W�u1,u2� =
1

2
k��u2 − u1� − l0�2, �10�

which in our collective coordinates can be written as

W�l� =
1

2
k�l�t� − l0�2, �11�

where k is the elasticity constant.
The links between the two models can be made more

explicit by using a value for l0 close to the minimum around
which the kink width oscillates in our simulations �cf. the
discussion in Sec. II C�.

It is important to point out that we have defined l as a kink
width variable as given in the expression �B7� of Appendix
B. However, what the quantity l actually means is the dis-
tance at which the kink shape approaches its asymptotic
value, measured from the center. This means that l in our
notation is half the “real kink width.” Consequently the ratio
�real kink width�/�period of the effective potential� becomes

2l̄ /L�0.4 for which a very interesting dynamics for point
particle dynamics has been reported in the related two-
particle model �31�.

This comparison between our model and that in �20� al-
lows us to point out their main differences as well. It is
particularly important that in our framework, the internal en-
ergy can describe satisfactorily the repulsive interaction be-
tween real molecules where a van der Waals–like force pre-
vents their overlap. This is very close to what occurs in
molecular motors: if we take again the motion of kinesin as
an example, this molecule has two dimer heads that act as
“feet,” allowing the molecule to “walk” along a microtubule
�32�. The repulsion will then appear when the two dimer
heads are too close. Such a repulsive interaction cannot be
naturally accounted for within the model of two particles.
For solving this problem the authors of �20� resort to fixing
arbitrary values for l0 which in our case is not necessary.
Note, however, that in spite of the technical differences be-
tween the two models, phenomenologically they are very
similar: both of them try to understand how the motion of
molecular motors, which proceeds in steps accompanied by
deformations �in the case of kinesin, when one step advances
in front of the other�, can arise. The common conclusion is
that a point particle ratchet would not be a good model be-
cause a second degree of freedom is needed to capture the
whole mechanism of the motion. The advantage in our ap-
proach is that this second degree of freedom arises on its
own, without a priori constructions, as an emergent property
of the nonlinear excitation. Recent studies �31,33� show
similar phenomena for the two degrees of freedom point par-
ticle ratchet of �20� when the ratchet is of flashing type. The
close relationship of the model of �20� to ours suggests that
nonlinear Klein-Gordon models can also exhibit rectification
working as flashing ratchets, an issue we will address in
future work.

FIG. 4. Internal potential energy vs normalized kink width, Eq.
�6� �SG case�. The inset shows the part of curve where the oscilla-
tions of the kink width take place.
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E. Length scales and quantization of transport

It should be clear from the results discussed so far that in
order to obtain a ratchet device for extended nonlinear sys-
tems with topological nonlinear excitations, the configuration
of the inhomogeneities should be designed in such a way that
the distance between the inhomogeneities is of the order of
the kink width. However, this picture is somewhat too
simple, and as we will see below, another important factor to
take into account is the existence of interference effects. Na-
ively, one may try to design a similar ratchet system for the
�4 equation. Considering only the kink width factor, it would
seem that on enlarging the SG array by a factor of �2 �the
ratio between the kink widths in the two models� similar
phenomena would be observed.

Let us make a more specific comparison between both
models. To this end, we use the 1CC framework in the non-
relativistic approach, where the equation of motion can be
written as

Ẍ + �Ẋ = −
du

dX
−

qA

M0
sin��t + �0� , �12�

where u=U /M0 is the normalized effective potential. For the
SG case we have the following expression:

u�X� =
2�

M0
�

n
�
i=1

3
1

cosh2��X − xi − nL�/l0�
�13�

with l0=1 and M0=8, whereas for the case of �4 we have

u�X� =
�

4M0
�

n
�
i=1

3
1

cosh4��X − xi − nL�/l0�
�14�

with l0=�2 and M0=2�2/3. The parameter q is the topologi-
cal charge and it is given by q=2� and q=2 for the SG and
�4 systems, respectively. The normalized effective potentials
for two different arrays are depicted in Fig. 5. Figure 5�a�
shows standard asymmetric potentials for ratchet systems ob-
tained with an array that satisfies the conditions mentioned
above for the location of the inhomogeneities in the SG case.
However, in Fig. 5�b� the effective potentials obtained for an
array approximately given by the multiplication by the factor
�2 of the first one, shows a local minimum similar to an
array of asymmetric double-well traps. This last one has been
used as a device for generating motion of vortices in super-
conductor materials �34�.

According to the our previous arguments based on the
kink width role, a similar picture is expected for the normal-
ized effective potential of the �4 and SG systems if the ar-
rays satisfy the same length ratio as the full systems. Strik-
ingly, Fig. 5 shows that the normalized effective potentials
are almost the same but for the same array length. This
apparent discrepancy can be explained if we take a detailed
look at the potential given by Eqs. �13� and �14� for both
cases �SG and �4�. It is clear from those expressions that,
while in the case of the �4 model we have a cosh4 factor in
the denominator, the SG model has a cosh2 factor. Therefore,
the peaks and valleys in the effective potential for the �4

system are much narrower than for the SG system, thus com-
pensating for the increment in length. In addition, in the SG

model we will have dynamical changes of the effective po-
tential due to the kink width variations, making more com-
plicated the dynamics of motion. In any event, these effec-
tive potentials obtained in the simple approach highlight the
importance of interference effects �see also �23,28�� and
make it clear that the kink width is not the unique quantity to
take into account.

The consequences of choosing either the first or the sec-
ond array for the kink dynamics are revealed in Fig. 6. We
have taken for the analysis the �4 model with a relative low
frequency for the ac force, for which the mean velocity as a
function of the ac force amplitude shows a staircase struc-
ture. The range for the amplitude values was taken from the

following rescaling expression: q�4
A�4

/M0
�4

=qSGASG/M0
SG.

This relation is deduced from the comparison between the
1CC approaches for SG and �4 models, considering the simi-
larity of the normalized potentials discussed above. Figure 6
shows the dependence of the kink mean velocity as a func-
tion of the amplitude for two different arrays and heights of
the perturbations introduced by the inhomogeneities. As we
can see, the motion is quantized as in standard ratchet sys-
tems �5,7� and is characterized by the existence of gaps for
which the net motion is absent �i.e., pure oscillating states�.
The absolute value of the mean velocity can be expressed as
	�dX /dt�	�	�V�	= �L� /2���m /n� as usual �35�, where the in-
dices m ,n�N quantize the motion. Using the expression for
	�V�	 we can characterize the motion for each frequency and

FIG. 5. Normalized effective potential for the kink center within
the CC approach, Eqs. �13� and �14�, for two different � peak arrays
with �=0.8. �a� x1=0.5, x2=1, x3=2.3, L=4. �b� x1=0.7, x2=1.4,
x3=3.2, L=5.6. In both panels SG model �solid line� and �4 model
�dashed line�.
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period of the array. Comparing the values obtained from the
simulations with the results derived from the expression for
	�V�	 with corresponding parameters L and �, we find that m
and n can take the following values. For Fig. 6�a�, m
=1,2 ,3 ,4 ,5 and n=1; for Fig. 6�b�, m=1,2 ,3 ,4 and n=1;
for Fig. 6�c�, m=1,2 with n=1 and 2; and for Fig. 6�d�, m
=1,2 with n=1 and 2. Although the mean velocity modulus
increases with the period L, the maximum value of the index
m significantly decreases, leading to a global decreasing of
the velocity. These results prove that the inclusion of more
inhomogeneities per unit cell, which obviously enhances the
period L, is not a good option if we want to reach high
velocities. Furthermore, a very low frequency would be re-
quired to obtain windows of motion. In the case of the de-
pendence on the inhomogeneities height, the starting point of
the stair-step structure shows a shift toward greater ampli-
tude of the ac force when the height is increased, which is
natural in order to overcome the barrier. Nevertheless, a
higher speed is found, arising from a higher m and observ-
able also as a broadening in the windows of motion.

III. DYNAMICS UNDER NOISE

This far, we have analyzed the ratchetlike behavior of our
system in the deterministic case. However, it is clear that for
our model to be more realistic, for instance, in the context of
LJJs, the effect of the temperature has to be taken into ac-
count. The behavior of ratchet systems for nonzero tempera-
ture has been extensively studied both for point particles
�5,6,36–38� and for nonlinear extended systems �10,12,39�.
As for the problem we are considering here, the fact that
there has not been much effort on soliton ratchetlike phe-
nomena induced by spatial inhomogeneities carries over to

the stochastic effects. Therefore, it is important that we ad-
dress this issue here. For the present work, we will focus on
the robustness of our rocking ratchet under thermal fluctua-
tions. Another relevant issue would be the possible activa-
tion, resonance, or modification of the transport features in-
duced by noise, but this topic deserves a detailed analysis
and will be the subject of future work.

A. Full model

For the sake of definiteness, we consider the SG model
under the influence of a Gaussian white noise; the results for
the �4 equation are similar. Introducing the effect of the
temperature through the fluctuation-dissipation relationship
and considering the overdamped case as before, taking �
=1, we find the following equation:

�tt + �t − �xx + sin����1 + V�x�� = f�t� + �x,t� , �15�

with

��x,t�� = 0,

��x,t��x�,t��� = D��x − x����t − t�� , �16�

where f�t��A sin��t+�0� and the intensity of the noise D
=2kBT.

For the numerical simulations of the full partial differen-
tial equation as well as for the numerical solution of the
collective variables �to be discussed in Sec. III B�, we have
used the Heun method with the Box-Muller-Wiener algo-
rithm for generating Gaussian random numbers of mean zero
and variance 1 �40�. In Fig. 7 we show the behavior of the
kink center dynamics under thermal fluctuations. Hereafter,
we have set the array parameters to be x1=0.5, x2=1, x3

FIG. 6. Simulation results for
�4. Mean velocity vs driving am-
plitude A for the frequency �
=0.015. �a� �=0.8, x1=0.5, x2=1,
x3=2.3, L=4. �b� �=0.6, x1=0.5,
x2=1, x3=2.3, L=4. �c� �=0.8,
x1=0.7, x2=1.4, x3=3.2, L=5.6.
�d� �=0.6, x1=0.7, x2=1.4, x3

=3.2, L=5.6. The lines connecting
the points serve as guides for the
eye.
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=2.3, L=4, and �=0.8 for our study. The mean velocity was
calculated using the expression in �8�, namely,

�V� = �Ẋ� = lim
t→�

�X�t� − X�0��
t

, �17�

where the average is to be understood over many realizations
of the noise. From this figure we see that the steps of the
deterministic case are now smoothed, a typical feature for the
dynamics under noise. It is important to realize that this
smoothing affects the regions between the windows, which
become minima of the mean velocity modulus 	�V�	 instead
of gaps with null mean velocity �see Fig. 7�a��. This phenom-
enon is directly related to the strength of the noise, i.e., when
the noise increases, the absolute value for the mean velocity
decreases but simultaneously the connection between the
windows becomes more evident and the windows of motion
become less pronounced.

As in most other ratchet systems, in our model the sto-
chastic fluctuations due to temperature assist the jumps of the
kink center from one well to the next one, allowing in some
cases jumps in the opposite direction to the rectification �see
the inset graphic in Fig. 7�b�� which is not possible in the
absence of noise. Accordingly, the thermal fluctuations affect
the mechanism of rectification whereas, on the other hand,
they yield the dynamics of the pure oscillating states of the

kink center unstable �i.e., destabilizing the regions with
locked directional motion for zero temperature�. The joint
action of both effects leads to the smoothing of the windows
and the connection of the deterministic gaps. For relatively
high temperatures the thermal kink energy is sufficient for
overcoming the barrier of the effective potential, and the
kink motion is in practice diffusive, the influence of the bar-
rier becoming negligible. For this reason the rectification of
motion takes place only for not so large values of the noise
intensity �see discussion in �41��.

A remarkable feature we have observed in the simulations
is shown in Fig. 7�b� for frequency �=0.1, where new win-
dows �absent in the deterministic case� appear. This scenario
is very similar to the one reported in �12� where a similar
surprising and intriguing phenomenon was noted. There, the
authors discussed that these new windows arose due to
jumps of the fluxons between stable and unstable pinned
fixed points of the deterministic dynamics. Considering the
interest in this stochastic phenomenon, we carried out a care-
ful analysis of the corresponding zone. To summarize this
work, in Fig. 8 we plot the mean velocity as a function of the
noise intensity for different values of the frequency, showing
the existence of an optimal value for the intensity of the
noise for which a maximum absolute value of the mean ve-
locity is obtained. The inset in Fig. 8 makes it clear that, as
expected and suggested in �12�, the mechanism of activation
occurs through jumps between multistable states �states of
the kink center which in the absence of noise are purely
oscillating�. Therefore, a higher velocity is obtained when
the residence time in these multistates is reduced or, in other
words, when the intervals between consecutive jumps de-
crease. Once again, this process of activation becomes more
effective when the noise intensity increases, but above a cer-
tain value of the noise intensity the kink center starts to jump
in the direction opposite to that of the rectification, leading to
a global loss in efficiency. This explains the existence of an
optimal value for the noise intensity for which the velocity
reaches a maximum value.

Another interesting characteristic observed in Fig. 8 is the
dependence of the maximum mean velocity on the fre-
quency. Specifically, for a frequency value slightly larger
than �=0.1, the maximum velocity decreases, the peak mov-

FIG. 7. Mean kink velocity �dX /dt� vs driving amplitude A for
different intensities of the noise. �a� �=0.05; D= �circles� 0, �filled
squares� 0.005, �squares� 0.05. �b� �=0.1; D= �circles� 0, �filled
squares� 0.005, �squares� 0.05. Lines serve as guides for the eye.
The inset shows several realizations for the motion of the kink
center with A=0.43, �0=�, and D=0.05.

FIG. 8. Mean kink velocity �dX /dt� vs intensity of noise D.
Circles, �=0.1 and A=0.70; squares, �=0.11 and A=0.75. Inset
shows one realization for the motion of the kink center for �=0.1,
A=0.70, �0=0, and D=0.005.
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ing toward greater values of the noise and the corresponding
window of motion moving toward greater values of the ac
force. Accordingly, for a relatively large value of the fre-
quency, above �=0.11, the window of motion induced by
noise disappears. On the other hand, for frequencies slightly
smaller than �=0.1, a new window in the absence of noise is
obtained. With all these results, it is clearly established that
the unidirectional motion induced by noise occurs only for a
narrow window of frequency values.

We will show in Sec. III B that this phenomenon seems to
be a general feature, since at the CC level the system behaves
very much like the dynamics of point particles.

B. Collective coordinates in presence of noise

In order to understand the behavior observed in the pre-
vious section we resort again to the CC approach. As a first
step, we take into account only one degree of freedom. Al-
though, as discussed above, this framework is inaccurate for
describing quantitatively the kink motion on a lattice of in-
homogeneities, it does help understand qualitatively most of
the features observed in the simulations, without unnecessary
analytical complications. After some algebra �see Appendix
A for details�, with �=1, we find the following expression
for the kink center coordinate with noise:

M0Ẍ + M0Ẋ = −
dU

dX
− qf�t� + �DM0��t� �18�

with ���t��=0, ���t���t���=��t− t��. For the sake of simplicity

we have taken the nonrelativistic approach Ẋ2�1, for which
the noise turns out to be simply additive.

Figure 9 presents the results of the numerical integration
of Eq. �18�. Much as we did in the simulations, we calculate
the mean velocity using Eq. �17�, taking up to 500 realiza-
tions. From this plot two main features also observed in the
simulations can be seen. First, smooth curves are obtained
for the mean velocity as a function of the amplitude of the ac
force, with values that decrease when the noise is increased.

Second, new windows appear, and inside them there is a
value of the noise intensity for which the velocity reaches a
maximum value �inset in Fig. 9�. It is thus evident that, in
spite of the quantitative differences with the simulations, this
simple approach does predict correctly the qualitative behav-
ior of the full system.

In order to improve the results presented so far, we have
extended the framework to two collective variables. By do-
ing so �see Appendix B� we arrive at Eqs. �B21� and �B22�
with two uncorrelated multiplicative white noises, meaning
that the stochastic driving terms depend on the kink width
dynamics.

The results for this improved approach are collected in
Fig. 10. Comparing with the simulations �Fig. 7�, we can
observe the excellent agreement, with the locations of the
windows correctly predicted. As expected the curves are
again smooth, a feature correctly accounted for already in the
1CC framework. For the frequency �=0.1, a new window is
predicted, whose location is also in very good agreement
with its corresponding window in the simulations. These re-
sults confirm the importance of considering the kink width

dynamics in the framework of the collective coordinates in
order to achieve correct quantitative results as compared to
the simulations.

IV. CONCLUSIONS

We have studied the dynamics of solitons in a lattice of
pointlike inhomogeneities in two different nonlinear systems,

FIG. 9. CC approach: Mean kink velocity �dX /dt� vs driving
amplitude A for different intensities of the noise and frequency �
=0.1. Solid line, D=0; dotted line, D=0.005; dashed line, D
=0.05. Inset: Mean kink velocity �dX /dt� vs noise intensity D for
A=0.7625.

FIG. 10. CC approach for two degrees of freedom �Eqs. �B21�
and �B22� of Appendix B�. Mean kink velocity �dX /dt� vs driving
amplitude A for different intensities of the noise. �a� �=0.05; D
= �solid line� 0, �dotted line� 0.005, �dashed line� 0.05. �b� �=0.1;
D= �solid line� 0, �dotted line� 0.005, �dashed line� 0.05. Inset
shows mean kink velocity �dX /dt� vs noise intensity D for A
=0.72 with �=0.1.
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the SG and the �4 models, as good representatives of an
entire class of nonlinear models. We have designed a peri-
odic lattice made of an asymmetric unit cell, where, depend-
ing on the lattice parameters, ratchetlike motion of solitons
�rectification� is observed. This is one of the few examples
proposed so far for soliton ratchets based on spatial inhomo-
geneity. Building on a preliminary work reported in �18�, we
have analyzed in full detail all the characteristics and fea-
tures of interest of our model. In order to understand the
observed phenomenology, we have developed two CC ap-
proaches: one that takes into account only the motion of the
kink center, and another one that includes the kink width as a
second degree of freedom. We have seen that whereas both
techniques give good qualitative results and allow for a gen-
eral understanding of the phenomenon, only when the kink
width enters in the CC description are the results quantita-
tively correct. Interestingly, the CC approach allows us to
show that rectification takes place only when the unit cell
gives rise to an effective potential of the same length scale as
the kink width. This fact, along with the relevant role played
by the width dynamical behavior, makes us conclude that
one essential ingredient for observing ratchetlike behavior in
this system is the existence of length scale competition �19�.

As a necessary complement to the deterministic study, we
have considered the influence of thermal noise on the behav-
ior of our model systems. As in the deterministic case, the
CC technique yields very good results. Of particular rel-
evance is the appearance, at the 2CC level, of multiplicative
noise in the CC equations, coupled to the kink width. This is
yet another hint to the crucial role played by this degree of
freedom in the dynamics of the system. Another important
feature is the motion activation induced by noise, which was
observed in the simulations and later corroborated in the CC
framework.

In a wider context, we believe that the CC approach pre-
sented here, and the conclusions about the role of the kink
width, are of a much more general applicability. This is the
case, for instance, with the anomalous resonances observed
in nonlinear Klein-Gordon models �42�, which can only be
explained by considering the width degree of freedom. Spe-
cifically within the context of rectification, we have previ-
ously shown that the existence of ratchet behavior induced
by pure asymmetric temporal driving in a homogeneous sys-
tem, recently demonstrated in experiments in LJJs �15�, is
due to the coupling between the translation and the width
oscillations �14�. Based on all these experiences, we believe
that the implementation of the 2CC approach can improve
the results obtained in the case of spatially correlated noise
�43,44�, where the length scale competition between the cor-
relation length and the size of the kink takes place �43�.

This formulation would also be necessary in using the CC
framework for describing the transport of proteins assisted
by a thermal bath provoked by ATP molecule hydrolyzation,
where the width is an important quantity to take into account.
On the other hand, the crucial contribution of internal de-
grees of freedom in the functioning of molecular motors is
becoming more and more evident �32�. In this respect, our
results suggest that models including this degree of freedom,
in a natural way as in our case, can be proper descriptions of
those phenomena. Size dependent rectification has also been

reported in colloids �45� and rectification through clustering
has been observed in granular gases �46�, which further re-
inforce our conclusion that the deformation or internal de-
grees of freedom must be an ingredient of a good theoretical
description of ratchet phenomena beyond the point particle
scenario.

Finally, we want to stress that our design of a soliton
system with ratchet behavior is a very simple one, which can
be implemented in actual experiments and devices such as
LJJs, for instance. Another field where the current state of the
art allows one to apply this result is that of engineered mo-
lecular motors, demonstrated, e.g., in �47�. In this case, our
proposal may apply to the design of biomolecular devices
with medical applications. Generally speaking, this type of
approach to rectification can be of interest for applications in
which it is necessary to have a tunable rectifier tailored for a
specific regime. Of course, experimental verification of our
predictions is needed to ascertain the accuracy of our results.
We hope that this work stimulates experiments in this direc-
tion. Indeed the research reported here opens perspectives in
the design of ratchet devices for more complicated extended
nonlinear systems, such as general coupled chains �48�. Of
particular interest in this class are stacked LJJs �49�, although
there are many other systems with potential applications in
different areas. Work along this line is in progress.
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APPENDIX A: COLLECTIVE COORDINATES: FIRST
APPROACH

In order to apply the GTWA first proposed in �50� we
rewrite Eq. �1� adding Gaussian white noise

�̇ =
�H

��
, �A1�

�̇ = −
�H

��
− ��̇ −

�Ũ

��
V�x� + f�t� + �x,t� �A2�

with

��x,t�� = 0,

��x,t��x�,t��� = D��x − x����t − t�� , �A3�

where �= �̇, f�t��A sin��t+�0�, D=2�kBT, and H is the
Hamiltonian corresponding to the unperturbed form of Eq.
�1� given by

H = �
−�

+�

dx�1

2
�2 +

1

2
�x

2 + U���
 . �A4�

As starting point we assume that the solution has the form
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��x,t� = �K„x − X�t�,Ẋ… , �A5�

and therefore by definition of � we have that

��x,t� = �K„x − X�t�,Ẋ,Ẍ… . �A6�

The index K refers to the kink shape, but in the following we
will omit it for simplicity. Following the procedure in �50�,
inserting �̇ , �̇ into Eqs. �A1� and �A2�, we get the expres-
sions

��

�X
Ẋ +

��

�Ẋ
Ẍ =

�H

��
, �A7�

��

�X
Ẋ +

��

�Ẋ
Ẍ +

��

�Ẍ
X� = −

�H

��
− �� ��

�X
Ẋ +

��

�Ẋ
Ẍ� −

�Ũ

��
V�x�

+ f�t� + �x,t� . �A8�

Multiplying Eq. �A7� by �� /�X and Eq. �A8� by �� /�X,
and then subtracting both expressions and integrating, we
arrive at the following equation:

NX� + MẌ = − �C1Ẋ − �C2Ẍ + Fac + Fstat + Finh + Fst,

�A9�

whose values for the coefficients and forces are given by

N = �
−�

�

dx
d�

�X

��

�Ẍ
, Fac = �

−�

�

dxf�t�
��

�X
,

C1 = �
−�

�

dx� ��

�X
�2

, Finh = − �
−�

�

dx
�Ũ

��
V�x�

��

�X
,

C2 = �
−�

�

dx
��

�X

��

�Ẋ
, Fst = �

−�

�

dx�x,t�
��

�X
,

M = �
−�

�

dx� ��

�Ẋ

��

�X
−

��

�Ẋ

��

�X� ,

Fstat = − �
−�

+�

dx��H

��

��

�X
+

�H

��

��

�X

 = − �

−�

+�

dx
�H
�X

= −
�E

�X
,

where E represents the energy of the system, H is the Hamil-
tonian density of Eq. �A4�, and Fstat is the static force due to
the external field, equal to zero for the above Hamiltonian.

Next we consider the SG potential for the system Eqs.
�A1� and �A2� for which we assume as solution the ansatz

��x,t� = ��0�
„��x − X�t��… = 4 arctan„exp���x − X�t���… ,

�A10�

where ��0�=4 arctan�exp��x−X0� / l0�� is the static kink solu-
tion of the SG system, centered in X0 and of width l0. Here

�=1/�1− Ẋ2 where we have put l0=1 for the SG case.
Considering the previous statement for the static force and

taking into account V�x� from Eq. �2�, we obtain

N = 0, Fac = − qf�t� ,

M = �3M0, Fstat = 0,

C1 = �M0, Finh = −
�U

�X
,

C2 = 0,

where M0=8 is the kink mass, q=2� is the topological

charge, and U�X , Ẋ� given by

U�X,Ẋ� = 2��
n

�
i=1

3
1

cosh2���X − xi − nL��
�A11�

is the effective potential. In the nonrelativistic limit Ẋ2�1,

U�X , Ẋ��U�X�.
A representation for the stochastic force Fst can be ob-

tained from the calculation of the variance. In the case of
additive noise it is allowed to make the following assump-
tion:

� ���0��x,t�
�X

���0��x�,t��
�X

�x,t��x�,t���
=

���0��x,t�
�X

���0��x�,t��
�X

��x,t��x�,t��� . �A12�

Hence the correlation function for Fst can be written as

�Fst�t�Fst�t���

= �
−�

� �
−�

�

dx dx�
���0��x,t�

�X

���0��x�,t��
�X

��x,t��x�,t��� ,

�A13�

for which, taking into account the expression �A2�, after
some algebra we get

�Fst�t�Fst�t��� = 2�kBT�M0��t − t�� , �A14�

i.e., Fst�t� is a white noise with kink diffusion constant

DK = �M0D .

As a consequence we obtain a nonadditive noise due to

the factor ��Ẋ�, i.e., we have a problem with multiplicative
noise.

Then the equation of motion �A9� can be rewritten as

�3M0Ẍ + ��M0Ẋ = − qf�t� −
�U

�X
+ �DK��t� �A15�

with ���t��=0, ���t���t���=��t− t��. Equation �A15� in the ab-
sence of inhomogeneities and noise agrees with the results
presented in �51�. The other terms that appear on the right-
hand side in Eq. �A15� are in correspondence with those
already obtained in �23,52� in the presence of impurities
�nonrelativistic approach� and Gaussian white noise, respec-
tively. The procedure used here is equivalent to the so-called
adiabatic approach by using modified conservation laws
�25�.
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APPENDIX B: COLLECTIVE COORDINATES: SECOND
APPROACH

In order to get the CC equations we follow a similar pro-
cedure as in the previous section but this time we propose a
solution with the form

��x,t� = �„x − X�t�,l�t�… , �B1�

��x,t� = �„x − X�t�,l�t�,Ẋ, l̇… �B2�

with �= �̇, which considers the kink width as a new collec-
tive variable �see, e.g., �42��.

Inserting Eqs. �B1� and �B2� in our system Eqs. �A1� and
�A2� and then multiplying the first equation by �� /�X and
the second one by �� /�X; subtracting both expressions and
integrating we arrive at the following equation:

�
−�

+�

dx
��

�X

��

�Ẋ
Ẍ + �

−�

+�

dx��,��l̇ + �
−�

+�

dx
��

�X

��

�l̇
l̈ − Fstat

= �
−�

+�

dx F�x,t,�,�t, . . . �
��

�X
�B3�

with F�x , t ,� ,�t , . . . �=−��̇− ��Ũ /���V�x�+ f�t�+�x , t�,
and

��,�� =
��

�X

��

�l
−

��

�l

��

�X
, �B4�

Fstat = − �
−�

+�

dx��H

��

��

�X
+

�H

��

��

�X

 = − �

−�

+�

dx
�H
�X

,

�B5�

where H is the Hamiltonian density of Eq. �A4� for which,
as was seen before, a null value for Fstat is obtained.

Repeating the same procedure, but now with �� /�l and
�� /�l, we get the expression

�
−�

+�

dx��,��Ẋ + �
−�

+�

dx
��

�l

��

�Ẋ
Ẍ + �

−�

+�

dx
��

�l

��

�l̇
l̈ − Kint

= �
−�

+�

dx F�x,t,�,�t, . . . �
��

�l
. �B6�

Following Rice �53� for the particular case of the SG
model

��x,t� = ��0�
„x − X�t�,l�t�… = 4 arctan�exp x − X�t�

l�t� �� ,

�B7�

Eq. �B3� becomes

M0l0
Ẍ

l
+ �M0l0

Ẋ

l
− M0l0

Ẋl̇

l2 = Fac + Finh + Fst �B8�

with

Fac = �
−�

�

dx f�t�
���0�

�X
= − 2�f�t� = − qf�t� , �B9�

Finh = − �
−�

�

dx sin���0��V�x�
���0�

�X
= −

�U

�X
, �B10�

Fst = �
−�

+�

dx �x,t�
���0�

�X
, �B11�

and

U�X,l� = 2��
n

�
i=1

3
1

cosh2��X − xi − nL�/l�
. �B12�

On the other hand, Eq. �B6� is transformed into


M0l0
l̈

l
+ �
M0l0

l̇

l
+ M0l0

Ẋ2

l2 = Kint�l, l̇,Ẋ� + Kinh + Kst

�B13�

with

Kinh = − �
−�

�

dx sin���0��V�x�
���0�

�l
= −

�U

�l
, �B14�

Kst = �
−�

�

dx �x,t�
���0�

�l
, �B15�

Kint�l, l̇,Ẋ� = −�
−�

+�

dx
�H
�l

= −
�E

�l
, �B16�

where 
=�2 /12, M0=8, l0=1, and

E =
1

2

l0

l
M0Ẋ2 +

1

2

l0

l

M0l̇2 +

1

2
M0� l0

l
+

l

l0
� . �B17�

As in the previous section we use the variances of the
stochastic forces in order to obtain approximate expressions
for it. Taking the assumption given by the expression �A12�
we find for �B11� the correlation function

�Fst�t�Fst�t��� = �
−�

� �
−�

�

dx dx�
���0��x,t�

�X

���0��x�,t��
�X

���x,t��x�,t��� = D��t − t���
−�

�

dx� ���0�

�X
�2

= D��t − t��
l0

l
M0. �B18�

In what follows similar expressions to Eq. �A12� valid for
additive noise are used in order to calculate other correlation
functions like
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�Kst�t�Kst�t��� = �
−�

� �
−�

�

dx dx�
���0��x,t�

�l

���0��x�,t��
�l

���x,t��x�,t��� = D��t − t���
−�

�

dx� ���0�

�l
�2

= D��t − t��
l0

l

M0 �B19�

and

�Fst�t�Kst�t��� = �
−�

� �
−�

�

dx dx�
���0��x,t�

�X

���0��x�,t��
�l

���x,t��x�,t��� = D��t − t��

��−�
� dx

���0�

�X

���0�

�l
= 0. �B20�

From the latter correlation for the stochastic forces we see
that these are not cross correlated.

Finally, collecting all the previous results we can rewrite
Eqs. �B8� and �B13� as follows:

M0l0
Ẍ

l
+ �M0l0

Ẋ

l
− M0l0

Ẋl̇

l2 = −
�U

�X
− qf�t� +�DM0l0

l
�1�t� ,

�B21�


M0l0
l̈

l
+ �
M0l0

l̇

l
+ M0l0

Ẋ2

l2 = −
�U

�l
+ Kint�l, l̇,Ẋ�

+�D
M0l0

l
�2�t�

�B22�

with ��i�t��=0, ��i�t�� j�t���=�ij��t− t��, for i , j=1,2.
A feature of particular interest in these new equations is

the presence of stochastic forces which are multiplicative
white noises dependent on the kink width variable.

The method described here using the technique of projec-
tion is equivalent to the variational calculations of the mo-
mentum and the energy of the system for perturbed nonlinear
Klein-Gordon systems of the form of Eqs. �A1� and �A2� and
with a Hamiltonian of the form of Eq. �A4� �see �42� for
details�. Another procedure and derivation has been recently
presented in �54�.
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