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We extend our previous work on soliton ratchet devices �L. Morales-Molina et al., Eur. Phys. J. B 37, 79
�2004�� to consider the joint effect of two ac forces including nonharmonic drivings, as proposed for particle
ratchets by Savele’v et al. �Europhys. Lett. 67, 179 �2004�; Phys. Rev. E 70, 066109 �2004��. Current reversals
due to the interplay between the phases, frequencies, and amplitudes of the harmonics are obtained. An analysis
of the effect of the damping coefficient on the dynamics is presented. We show that solitons give rise to
nontrivial differences in the phenomenology reported for particle systems that arise from their extended
character. A comparison with soliton ratchets in homogeneous systems with biharmonic forces is also pre-
sented. This ratchet device may be an ideal candidate for Josephson junction ratchets with intrinsic large
damping.
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The understanding of ratchet mechanisms is a very active
field of wide interest by its potential application in the design
of devices with new transport properties. The key feature of
ratchet devices is their ability to rectify the motion of par-
ticles subjected to an external ac force with zero time aver-
age. Originally proposed as a toy model for molecular mo-
tors, in the last decade many proposals have been put
forward for devices that use this ratchet phenomenon in dif-
ferent applications �1�. Ratchets working with extended par-
ticles �solitons� were subsequently studied as a generaliza-
tion of particle ratchets �2�. Recently, an overdamped ratchet
device for a single particle driven by two ac forces was in-
troduced by Savele’v and coworkers �3�, in which the com-
bination of the two drivings produced a variety of interesting
phenomena and allowed a finely tunable control. In view of
the rich behavior demonstrated by this system, a very natural
issue is its extension to soliton ratchets that have important
applications which can benefit from this proposal.

Soliton ratchets under the presence of two ac forces have
been extensively studied �4,5� in homogeneous systems, i.e.,
without an underlying ratchet potential. In this case, it has
been shown that the ratchet mechanism works only for asym-
metric biharmonic forces, where the appearance of a directed
translational motion is a result of the effective coupling be-
tween the internal mode �oscillations of the soliton width�
and the external driving force. In this paper, we focus on a
soliton ratchet device recently studied by us �7,8�, based on a
nonlinear Klein-Gordon model with a lattice of deltalike in-

homogeneities that induce a ratchet potential for the solitons.
As we will see, one of the advantages of our model as com-
pared to the homogeneous system is that it works irrespec-
tively of the symmetry of the ac driving: Directional trans-
port takes place for ac forces with commensurate
frequencies. Moreover, in the homogeneous system the mo-
tion drastically decreases for increasing damping, due to the
slowing down of the soliton width oscillations �5�, while in
the present system the ratchet phenomenon is present up to
rather large values for the damping.

Our model, first introduced in �7�, is given by

�tt + ��t − �xx + sin����1 + V�x�� = f�t� , �1�

where f�t�=A1 sin��1t+�1�+A2 sin��2t+�2�, being A1, A2

the respective amplitudes of forces, �1, �2 the frequencies,
and �1 and �2 the phases of the harmonics �see, e.g., �3��.
Here we focus on the sine-Gordon model, although the same
scheme can also be applied to the general nonlinear Klein-
Gordon model �8�. For V�x�, we choose a spatially periodic
potential, where the unit cell is given by an asymmetric array
of delta functions �inhomogeneities� in order to produce a
ratchetlike phenomenon. Specifically, the unit cell, of length
L, is defined by three inhomogeneities with the same inten-
sity, the first one located at the beginning of the cell, the
second one at a distance a from the first one, and the third
one at a distance b from the second one, i.e.,

V�x� = ��
n

���x − x1 − nL� + ��x − x2 − nL� + ��x − x3 − nL�� ,

�2�

where L=a+b+c, a=x2−x1, b=x3−x2, and c=L+x1−x3,
with x1�x2�x3. The parameters �a ,b ,c� are chosen to be
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comparable to the static soliton width l0 in absence of inho-
mogeneities. In addition, these should fulfill the conditions
a ,b�c with a�b.

As a preliminary step, we begin our study by analyzing
how the system works in different regimes of damping. This
is very relevant to applications such as Josephson junctions.
While the standard Josephson junctions work usually at
small damping, junctions with intrinsically high damping
such as superconductor insulator normal-conductor insulator
superconductor �LJJ� or high-Tc LJJ technology can also be
fabricated �6�. For this particular aspect, we look at the case
of a single harmonic component in Eq. �1� �A1=A ,�1

=� ;A2=0 ,�2=0�. In this case, according to �7,8� we have a
directed motion whose direction is determined by the posi-
tion of the inhomogeneities, and the dynamics reduces to a
system very much like a rocking ratchet for a single particle
�9�. Our results are shown in Fig. 1, where we have chosen a
lattice of inhomogeneities whose configuration �a�b� yields

a negative current �7�. Hereafter �Ẋ� means the time average
of the velocity. The figure demonstrates the increment of the
efficiency upon decreasing the damping �. One can note the
increment of the number of windows of motion as well as the
absolute value of the mean velocity �Figs. 1�a� and 1�b��. On
the other hand, one can observe a shift of the windows to
lower values of the force amplitude as the damping de-
creases. The behavior for a particular value of the force am-
plitude as a function of the damping is shown in Fig. 1�c�.

We note also that for these frequencies with lower damp-
ing values, the dynamics results depend on the initial condi-
tions, which may lead to a chaotic dynamics.

Let us now move to the situation with two simultaneously
acting ac forces. For the time being, we work with sinusoidal
forces as in Eq. �1�, and we will consider later the case
of rectangular pulses as in �3�. With two harmonics present
�doubly rocked ratchet� we have a system in which the
symmetry can be broken both spatially �reflection symmetry
V�x�=V�−x�� and temporally �time shift symmetry for
f�t� �4,5� with T=2� /�1�. As we will now see, it is possible
to obtain current reversals irrespective of the symmetry of
the biharmonic force. The reason is that the underlying
mechanism of transport studied for homogeneous systems
subjected to biharmonic forces that required temporal sym-
metry breaking �4,5� is not responsible for the directional
transport in our present model, as can be inferred from the
fact that in the inhomogeneous system we have directed
transport under large damping. We examine the dynamics of
Eq. �1� in the partially adiabatic regime �1 /�2	1 with
�1	�0 ��0=0.5 is the half of the lowest phonon� and
�2��0, setting A1=A2=A. In the partially adiabatic regime,
multiple current reversals are possible in the particle ratchet
system �3�. Figure 2 confirms clearly the existence of several
current reversals in our soliton device. The results show that
we can reverse the direction of motion by changing the force
amplitudes, which, as in the particle case, opens the possi-
bility to control the rectification properties in great detail.

In the previous analysis we have taken �=1, i.e., a rather
large damping where the inertial effects are small. However,
from the above discussion for one harmonic, we expect
changes in the behavior also in the case of a biharmonic

force when the damping is reduced. Figure 3 exhibits indeed
a different picture for the dynamics as compared with Fig. 2.
The main differences are related to the shift of the windows
of motion toward lower force amplitude values as well as an
increase of the absolute value of the mean velocity for some
force amplitudes. Interestingly, we note from this picture a
nontypical behavior for the average velocity close to the re-
gion where the first current reversal takes place: We observe

FIG. 1. �Color online� �a� and �b� Mean velocity versus force
amplitude for two frequencies �a� �=0.015 and �b� �=0.05. In both
cases, results for two damping values �=0.8 �circles, solid line� and
�=1 �squares, dashed line� are shown. Lines are only guides to the
eye. �c� Mean velocity versus damping coefficient � for two differ-
ent frequencies with A=0.2. squares: �=0.015; filled circles:
�=0.05. The parameters used in all panels are �=0.5, x1=0.5,
x2=1, x3=2.3, and L=4.
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that while for some values of the force amplitude the win-
dows of motion are suppressed; for other cases, the absolute
value of the average velocity is enhanced and even reversed.

This issue can be further examined in Fig. 4, where the
dependence of the average velocity on the relative phase of
the drivings is plotted. Here we see that by changing the
phases we reverse the direction of motion. This behavior is
not only restricted to this singular region in Fig. 3; in fact, it
can be observed close to the regions where the currents are
reversed in Fig. 3. We stress that we have taken �1=0 and
�2=� without loss of generality, since although the dynamics
obviously changes with both phases �1 and �2, one can al-
ways map the choice for �1 and �2 into the previous repre-
sentation through the transformations �2�=�2− ��2 /�1��1

with �1�=0. A feature of the behavior for this doubly rocked
ratchet system, which differs from the homogeneous system
case, is the quantization of the velocity dependence on the
phase �see Fig. 4 and compare with Fig. 2 in �5��. This is yet
another evidence that the ratchet mechanisms at work in the
homogeneous and inhomogeneous cases are not the same.
Nevertheless, despite this quantized nature, it is feasible to

control the direction of motion by tuning the phases of the
biharmonic force as in the homogeneous case.

In view of the similarities with the single particle ratchet
system in �3�, it is important to assess the degree of similar-
ity between the two systems. Savele’v and coworkers focus
mainly on the case of rectangular wave signals as the asym-
metry and nonlinearity-induced mixing are separable �3�. For
such rectangular wave signals in the fully adiabatic regime
with a sawtooth ratchet potential, Savele’v et al. report
changes in the dynamics only for a relation between the fre-
quencies given by �2 /�1= �2m−1� / �2n−1�. As Fig. 5
shows, in our case with �1 ,�2	�0 the behavior turns out to
be much more complicated. The average velocity fluctuates
around the value indicated by a horizontal line, but it does
exhibit very many peaks. Most importantly, unlike the single
particle picture shown in �3�, here the peaks appear not only
for fractional harmonics �2 /�1= �2m−1� / �2n−1�, but also
for harmonics that fulfill the relations �2 /�1= �2m−1� /2n
and �2 /�1=2m / �2n−1�.

The reason for the difference between the particle and
the soliton doubly rocked ratchets can be traced back to
the extended character of our solitons. It is well known that
the soliton dynamics is affected by the deformation of
the soliton width that accompanies its motion along an array
of inhomogeneities �8�. This in turn modifies the effective
potential arising in the description of the soliton as
point particle, as well as in the variations of the correspond-
ing effective force. Accordingly, there is a large degree
of feedback between the soliton width and the soliton
motion. To obtain some insight on these issues, it is neces-
sary to study the evolution of the degrees of freedom that
are involved. In order to do so, we resort to the use of the
collective coordinate approach �10� which involves the soli-
ton width as an additional degree of freedom. In doing so,
we find that the soliton can be described by two collective
variables X and l, whose expressions are given by Eqs. �4�
and �5� in �8�, with the difference that now f�t� contains
the two rectangular wave signals whose expression appears
in the caption of Fig. 5. This is in contrast to the single
particle doubly rocked ratchet of Savele’v et al., because
of the appearance of the width degree of freedom. This
collective coordinate approach explains in full detail the re-
sults of the simulations, as shown in Fig. 5 for the fully

FIG. 2. Mean velocity versus force amplitude A1=A2=A simu-
lations of Eq. �1�; the parameters used are �=1, �1=0.025,
�2=0.3, �=0.5, �1=�2=0, x1=0.5, x2=1, x3=2.3, and L=4. The
solid line is a guide for the eye.

FIG. 3. Mean velocity versus force amplitude. �=0.4, A1=A2

=A simulations of Eq. �1�. The other parameters are the same as in
Fig. 2. The solid line is a guide for the eye.

FIG. 4. Mean velocity versus �. Here we have taken �1=0 and
�2=� in Eq. �1�. The other parameters are A1=A2=0.16, �=0.4,
�1=0.025, and �2=0.3.
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adiabatic regime. Again, as in the simulations of Eq. �1� we
note not only the existence of peaks for the frequency
ratios �2 /�1= �2m−1� / �2n−1�, but also for some frequen-
cies ratio that fulfill the relation �2 /�1= �2m−1� /2n and
�2 /�1=2m / �2n−1�, absent in the single particle picture �3�.
This result is a clear demonstration of the role of the soliton
width in the dynamics.

To conclude, we have generalized the results obtained for
doubly rocked particle ratchets �3� to extended systems, find-
ing phenomena that arise from the intrinsic width of the soli-
tons. It was shown that the direction of motion can be modi-
fied by changing the relation between the frequencies ratio,
the phases of the harmonic forces, as well as their ampli-
tudes. However, in the frame of the fully adiabatic regime of
our soliton ratchet we find many more peaks than in the
particle ratchet system of Savele’v et al., as we see special
velocities for several types of frequency ratios. We have been
able to show that this is thoroughly accounted for by the
interplay of the soliton width and motion. We have also com-
pared to doubly rocked soliton ratchets in homogeneous sys-
tems �4,5� and verified that, although the soliton width is
involved in both cases, the mechanism for the appearance of
the ratchet effect is different. Aside from the fact that homo-
geneous soliton ratchets arise only for asymmetric bihar-
monic drivings, further important differences include the
damping dependence of the velocity and the quantization of
the dependence of the velocity on the relative phase. We
emphasize that our ratchet system can be straightforwardly
implemented in a Josephson junction device �6�. In that case,
the very many possibilities for the motion we have reported
here would allow for a highly controllable device that can be
tailored to fit different specific applications. The property
that the ratchet phenomenon is observed even in the presence
of large damping makes this system preferable to a homoge-
neous one driven by a biharmonic force, and makes it much
more suitable for real life applications. Finally, we note that
an analysis similar to the present one can be extended to
incommensurate ac forces with irrational values for the rela-
tion �2 /�1. However, our preliminary results show that this
choice gives rise to phenomena that require careful attention,
and therefore it will be the object of a future investigation.
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FIG. 5. �Color online� Mean velocity for different frequency
ratios �2 /�1 in the fully adiabatic regime with rectangular
wave signals f�t�=A1�t�+A2�t�. The parameters are �1=0.005,
A1=0.25, A2=0.05, �=1, and �1=�2=0. Top panel: simulations.
Bottom panel: collective coordinates. Inset of the top panel:
rectangular wave signals. Bottom: collective coordinates.
A1�t�=A1 sgn�sin��1t+�1�� �solid line�; A2�t�=A2 sgn�sin��2t
+�2�� �dashed line�; A2=A1 /2=0.1, �2=2�1, �1=0, and �2=� /2.

MORALES-MOLINA, MERTENS, AND SÁNCHEZ PHYSICAL REVIEW E 73, 046605 �2006�

046605-4


