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Unidirectional motion of solitons can take place, although the applied force has zero average in time, when
the spatial symmetry is broken by introducing a potential V(x), which consists of periodically repeated cells
with each cell containing an asymmetric array of strongly localized inhomogeneities at positions x;. A collec-
tive coordinate approach shows that the positions, heights, and widths of the inhomogeneities (in that order) are
the crucial parameters so as to obtain an optimal effective potential U, that yields a maximal average soliton
velocity. U, essentially exhibits two features: double peaks consisting of a positive and a negative peak, and
long flat regions between the double peaks. Such a potential can be obtained by choosing inhomogeneities with
opposite signs (e.g., microresistors and microshorts in the case of long Josephson junctions) that are positioned
close to each other, while the distance between each peak pair is rather large. These results of the collective

variable theory are confirmed by full simulations for the inhomogeneous sine-Gordon system.

DOI: 10.1103/PhysRevE.74.066602

I. INTRODUCTION

Ratchet or rectification phenomena appear in many differ-
ent fields ranging from nanodevices to molecular biology
[1-5]. In the simplest model a pointlike particle is considered
which is driven by deterministic or nonwhite stochastic
forces. Under certain conditions related to the breaking of
symmetries, unidirectional motion of the particle can take
place although the applied force has zero average in time.

These particle ratchets have been generalized to spatially
extended nonlinear systems, in which solitons play a similar
role to the above point particles [6—12]. In particular, solitons
in nonlinear Klein-Gordon systems have been shown to
move on the average in one direction, although the driving
force has zero time average, if either a temporal or a spatial
symmetry is broken.

In the first case, a biharmonic driving force has been used
which breaks a time shift symmetry [13,14]. Here the mecha-
nism of the ratchet effect has been clarified in detail by a
collective variable theory [15,16], which uses the soliton po-
sition X(#) and width [(¢). Due to the coupling between the
translational and internal degrees of freedom, energy is
pumped inhomogeneously into the system, generating a di-
rectional motion. The breaking of the time shift symmetry
gives rise to a resonance mechanism that takes place when-
ever the width I(z) oscillates with at least one frequency of
the external ac force. This ratchet effect has been confirmed
by experiments with annular Josephson junctions [17] which
can be modeled by sine-Gordon systems; here flux quanta
(fluxons) play the role of the solitons. As the external ac
force, biharmonic microwaves have been used.

The biharmonic force has recently been replaced by more
general periodic forces which can be expressed by Jacobian
elliptic functions. There, it turns out that the average soliton
velocity exhibits an extremum for a certain value of the
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modulus of the elliptic functions [18]. This means that there
is an optimal form for the periodic force.

Another way to obtain a soliton ratchet is to break the
spatial symmetry. This has been demonstrated very recently
by the introduction of pointlike inhomogeneities into nonlin-
ear Klein-Gordon systems [19,20]. These inhomogeneities
can be modeled by & functions, if their spatial extent is much
smaller than the characteristic length for the system (the Jo-
sephson penetration length in the case of Josephson junc-
tions). In order to achieve a ratchet effect the & functions
must form asymmetric periodic arrays. This asymmetry
translates into an asymmetry of an effective potential U(X,[)
which appears in a collective variable theory with the vari-
ables X(r) and [(1).

As an example, three ¢ functions of equal strength have
been positioned in each cell of an array with period L. The
above theory yielded a nearly perfect agreement with the
simulations for the inhomogeneous sine-Gordon system [20].
By choosing different arrangements for the positions of the &
functions within the cells of the array it was possible to in-
crease the average soliton velocity (v) which means that the
ratchet system provides better transport.

The aim of this paper is to search for the optimal shape
and arrangement of localized inhomogeneities, in the sense
that (v) becomes as large as possible. This means that instead
of & functions other functions which represent localized in-
homogeneities (e.g., Gaussians, Lorentzians, box-type func-
tions, etc.) have to be tested, and that the arrangement of
these inhomogeneities within the cells, but also the length L
of the cells in the periodic array, all have to be optimized.

In Sec. II nonlinear Klein-Gordon systems with localized
inhomogeneities are introduced. In Sec. III a collective coor-
dinate (CC) theory is developed which results in a set of
ordinary differential equations (ODEs) containing an effec-
tive potential U which depends on the inhomogeneities. It
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turns out that their most significant features for maximizing
(v) are their positions, heights, and widths, while their de-
tailed shape is unimportant. For this reason we work with the
simplest shape, namely, that of boxes, where U can be cal-
culated analytically. In Sec. IV the optimal effective potential
U, is obtained by using an ansatz in terms of Jacobi elliptic
functions. U, essentially exhibits two features: double
peaks consisting of a positive and a negative peak with a
steep slope in between, and long flat regions between the
double peaks. In Sec. V we show that the essential features
of U, can be produced by choosing appropriately the posi-
tions, heights, and widths of box inhomogeneities. In this
way very high soliton velocities can be obtained. These re-
sults of the CC theory are confirmed by full simulations for
the sine-Gordon system with the above inhomogeneities
(Sec. VI).

In the last section we stress that an important step in the
optimization consists in using inhomogeneities with opposite
signs. Both types of inhomogeneities were already used in
long Josephson junctions, namely, microresistors (critical
current J, decreased) and microshorts (J. increased) [21].
However, so far only equidistant arrays of either type were
used in experiments. We propose to use a specific combina-
tion of both types, resulting in an asymmetric periodic array,
which yields very high average soliton velocities both in a
collective coordinate theory and in full simulations for the
inhomogeneous sine-Gordon system.

Finally, we remark that Abrikosov vortices in Josephson
junctions, with axes almost perpendicular to the junction
plane, can be regarded as microresistors [22]. Moreover, it is
now possible to fabricate 7 Josephson tunnel junctions with
a ferromagnetic barrier, which offer several new applications
[23]. Another possibility is offered by high-T, superconduct-
ors made of granular materials. In this respect, the interplay
between the shape and geometry for the grains may lead to a
nonsymmetric landscape for the propagation of fluxons [24].

II. INHOMOGENEOUS NONLINEAR KLEIN-GORDON
SYSTEMS

A ratchet effect has recently been obtained [19,20] by
breaking the spatial symmetry of nonlinear Klein-Gordon

systems with inhomogeneities introduced via a potential
V(x),

o+ By o+ Z—Z[l F V= ). (1)

Here ¢(x,1) is a scalar field, ¢, and ¢, are partial deriva-
tives with respect to space and time, 8 is a damping coeffi-

cient, U( ¢)=1-cos ¢ is the sine-Gordon (SG) potential, and

U=1(¢?—1) the ¢* potential. As both cases have produced
very similar results [20], we will concentrate on the SG
model in the following, but we will always indicate which
results also hold for the ¢* model. f(f)=A sin(wt+ &) is an
external ac force with amplitude A, frequency w, and initial
phase 9.

V(x) consists of periodically repeated cells of length L;
each cell n contains an asymmetric array of strongly local-

PHYSICAL REVIEW E 74, 066602 (2006)

ized inhomogeneities g;(x) which are placed at positions x;
within the cell; i.e.,

V() =2 X g(x—x;=nL). 2)

So far only the case of pointlike inhomogeneities was
considered, which can be modeled by & functions. Taking
three & functions with equal strengths and choosing their
positions x; in certain asymmetric ways, a sine-Gordon soli-
ton (also named a kink in the following) moves either to the
right or to the left on the average [19]. Depending on the
choice of the driving frequency w, qualitatively different re-
sults were obtained for the modulus U of the average soliton
speed (v) as a function of the driving amplitude A: (a) For
the low frequency w=0.015 there is an up and down stair-
case with the maximum average velocity v,,,,=0.038 20, (b)
for the intermediate frequency w=0.05 there are five “win-
dows” (regions of A with constant 0>0) with v,
=0.031 83, and (c) for the relatively high frequency w=0.1
there is only one window with height v,,,,=0.063 666. For
even higher frequencies, 0 vanishes for all amplitudes A. The
results for ¢* nonlinearity are quite similar.

Umae 18 always small compared to the critical velocity ¢
which is unity for the dimensionless system (1). For long
Josephson junctions c is the Swihart velocity [25].

The aim of this paper is to optimize both the shape and
the array of the inhomogeneities in the sense that v becomes
as large as possible. Naturally, there are still other criteria for
the optimization. For example, one can try to maximize the
area under the curve v vs amplitude A; this will be discussed
later. Other optimization strategies include studying the en-
ergy efficiency. We do not consider this approach here, but
we refer the reader to Ref. [26].

In order to achieve any kind of optimization, it is neces-
sary to have a theory which allows calculation of (v) for a
given array of inhomogeneities. A CC theory with two vari-
ables (2-CC), namely, position X(r) and width [(r) of the
soliton, has turned out to be very successful [19], in the sense
that in the case of & functions the results for (v) as a function
of the driving amplitude A agree very well with the simula-
tions for the original system [full numerical solution of Eq.
(1)]. Deviations between theory and simulation are found
only in the case of strong driving [A=0(1)]. For even stron-
ger driving the theory is no longer applicable, because in the
simulations kink-antikink pairs appear spontaneously and
scatter with the soliton under consideration. The 2-CC theory
is characterized by two ODEs for X(¢) and I(¢), which con-
tain forces that are defined as partial derivatives of an effec-
tive potential U(X,I), which is calculated and discussed in
the next section.

We take for our computations a rather large damping,
choosing B=1, for the following reasons.

(a) Our CC theory does not take into account the phonons
which are radiated by the soliton due to its acceleration by
the driving force. These phonons are quickly damped out
when the damping is large.

(b) We want to avoid several phenomena which can occur
for very small damping, e.g., chaotic behavior and current
reversals.
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Finally, we remark that the spatial symmetry can be bro-
ken also by the introduction of an additive inhomogeneity
v(x) in Eq. (1), instead of our multiplicative inhomogeneity

(0U/3¢)V(x). In the case of long Josephson junctions an
additive inhomogeneity has been experimentally realized by
a current injection with a profile y(x) [27,28]. This produces
an effective potential which is similar to an asymmetric saw-
tooth potential [28].

III. COLLECTIVE COORDINATE THEORY

For the unperturbed sine-Gordon equation, i.e., Eq. (1)
without damping, inhomogeneity, and driving, the one-
soliton solution reads

do(x,1) =4 arctan{exp( yx ;Ovt) ] , (3)

where v is the soliton velocity, /y=1 is the rest width, and
lo/ y:lo\ﬂ‘rvz is the Lorentz-contracted width.

For perturbed nonlinear Klein-Gordon systems the so-
called Rice ansatz [29] turned out to be very successful. For
example, for the ac-driven ¢* system an unexpected reso-
nance was predicted (and confirmed by simulations), which
is situated in the gap below the phonon spectrum at half the
frequency of the internal mode of the ¢* kink [30,31]. The
Rice ansatz for SG systems reads

- X(r
@(x,X,1) = 4 arctan exp(x ( )> (4)
1(r)
with soliton position X () and width [(r). The 2-CC theory for

the perturbed SG equation (1) yielded a set of two coupled
ODE:s [20]

X% %o

M0107 + ,8M0107 - Molol—2 =F+ F", (5)
i P

aMoloz + IBCYM()Z()E + Mol()l_2 =K"™"+ K" s (6)

where a=72/12, My=8, lp=1, and

F= f dxf(t)j—j(S =—-qf(1) (7)

with the topological charge g=2.

. oE
Klnt - — 8
p (8)

is a force that arises from the soliton energy
P U U A | (lo l>
EX,LI) ==—MyX*+ =—aMy*+ ~Mo| —~+—|, (9
()210X21a020110 )

including internal energy due to width oscillations.
There are two forces that appear due to the potential V(x)
in Eq. (1), viz.,
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. s U9 s gUu U
F’”h=—f dx——d)V(x)=—f dx—V(x)=-—,
— dPIX w  0X 1.4
(10)
‘ c9Ud = oU U
Kmh —_ J dx——gbV(X) = J dX_V(X) = -,
» O¢ dl e dl al
(11)
In this way the effective potential
UX,)=| dxU($) V(x) (12)

—o0

is introduced that characterizes the influence of the inhomo-
geneities on the soliton dynamics. We remark that all the
above results also hold for the ¢* model: In this case ¢
=tanh[(x—X)/[] and the parameters are g=2, M;=22/3,
ly=72, and a=(7*-6)/12.

Before we specify V(x) we evaluate U(). First we derive
the relation U(¢y)=(do/32)2/(29%)=2 sech?(yz), with z=x
—ut, by inserting ¢, into the unperturbed SG equation. How-
ever, ﬁ(d)) cannot be obtained in this way because ¢(x,X,[)
is not an exact solution, but rather an ansatz. However, we
can generalize the above relation for U(gy) to l~/(¢)=%lz¢§
=2 sech?(z/1), with z=x—X, and this can be verified by, e.g.,
MATHEMATICA [32].

Thus we finally obtain

- -X
UX.]) = f deSechsz V(). (13)

Now we can insert the superposition (2) of localized in-
homogeneities g; and obtain

UX,h)=> > U", (14)

x—X

Uﬁ'ﬁ:f dx 2 sech® gilx—x;,—nlL). (15)

We can check that the effective potential is indeed periodic,
UX+L,1)=U(X,I), because the sum goes over an infinite
number of unit cells n of length L.

Our next step is to evaluate Uf.") for various strongly lo-
calized functions g; and to discuss which are the most impor-
tant features of the inhomogeneities. We have tested Gauss-
ians, Lorentzians, and box functions and it turns out that
there are only two important features of g, namely, the
height and width. For the above three cases, the Ul(.”) are
always bell shaped, and the desired asymmetry of U depends
most strongly on the relative positions of the UE") within the
cells. In other words, the most important features of the in-
homogeneities g; are their positions x;, then come their
heights and widths, while their detailed shape is unimportant.

For this reason, we can choose the simplest case, namely,
the box functions, which has the additional advantage that
U(X,I) can be calculated analytically (in contrast to the other
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two cases). The box function g; at x; in cell n=0 is defined as

hi forx,-—b,»$x$xl-+bi,

8i= . (16)
0 otherwise.

This yields

(0) . 2bl X—xi+b,~ X—xi—bi
U;” =2h;l sinh 7 sech / sech / ,

(17)

and we can check that in the limit #;— %, b;— 0 with finite
€;:=2b;h; the result for a S-function inhomogeneity [19] can
be regained: U§0)=26,- sech?[(X—x;)/]. The final result for
the effective potential (14) is

2b, Z Z
U(X,l)= >, >, 2h;l sinh = sech 7* sech == (18)

n i

with Z,=X—-x;—nL+b;.

In this way the optimization problem is solved, but only
in principle. We choose a set of box inhomogeneities at the
positions x; within the cells, numerically solve the ODEs (5)
and (6) for X(r) and I(¢), and compute the average soliton
velocity, defined by

(v)= <X> — Hmw’

t—00 t

(19)

choosing a sufficiently long integration time. Then the pro-
cedure has to be repeated for many values of the driving
amplitude A (keeping the driving frequency w fixed), in or-
der to find the maximal soliton speed

U = max{|(v)!} (20)

for that set of parameters. Finally, we would like to obtain
Unae fOr a low, a medium, and a relatively high frequency,
because it is known from the case of the d-function inhomo-
geneities that the curves (v) vs A differ qualitatively for the
above choice of frequencies (see Sec. II).

In practice the whole procedure cannot work because the
dimension of the parameter space is far too high. For ex-
ample, if one takes three inhomogeneities per cell, as in the
case of the & functions, one has ten parameters, namely, three
positions, heights, and widths of the boxes, plus the cell
length L. As one has to make sweeps in A in order to get v,,,,
for every parameter set, it is practically impossible to explore
the ten-dimensional parameter space. Obviously, we have to
find a more efficient way to obtain an optimal set of inho-
mogeneities.

IV. OPTIMAL EFFECTIVE POTENTIAL

Our approach is not to work directly with the potential
V(x) in the inhomogeneous SG equation (1), but to design
first an optimal effective potential U,,, for a given driving
force, i.e., for fixed A and w. When Upi has been obtained, it
can be represented (approximately) by the superposition (18)
of the pulse-shaped contributions UE”). That is, the many pa-
rameters in Eq. (18) could be determined for instance by a
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least-squares fit of U to U,,, which is much more efficient
than a search in the high-dimensional parameter space.

For simplicity we will not try to find U,,,(X,]) within the
2-CC approach. It will turn out to be sufficient to find an
optimal potential within the 1-CC theory which starts with
the ansatz

¢o(x,X) = 4 arctan{exp[ y(x - X(1)))] (21)
with

y=1/N1-X2. (22)
This yields one ODE [20]

Y’M X + yBX = F* + ", (23)
with F"'=—gU/ X and

U= Jm dx U(p)V(x) = f” dx 2 sech’[ y(x = X)] V(x).

(24)

Here, ¥*M,, is the so-called longitudinal relativistic mass. So
far only the nonrelativistic limit (y=1) of Eq. (23) was con-
sidered in the context of the S-function inhomogeneities
[19,20]. Here we need the relativistic version, because our
optimization will yield velocities that are no longer small
compared to the critical velocity c=1.

As noted above, we do not consider here the expression
(24) for U in terms of V(x), but we want to find quite gen-
erally the optimal U for a given driving force F*“. U,,, must
be asymmetric and periodic. As the most general periodic
functions are the Jacobi elliptic functions, we use the ansatz

U,pX) = — € sn(kX,m) cn(kX,m), (25)

where m is the modulus of the elliptic functions, k&
=2K(m)/L is a generalized wave number, and K(m) is the
complete elliptic integral of the first kind.

This type of ansatz was first introduced in [18] as a gen-
eralized driving force to break the temporal symmetry in
ratchet  systems, namely,  f(t) =F,;,(t)=€sn(Qt,m)
cn(Qt,m) [where Q=2K(m)/T with period T]. Using only
symmetry arguments, and taking into account the first two
terms of the Fourier series of F;,(1), it was shown in [18]
that the optimal value for m is 0.960 057, independent of the
details of the ratchet models. However, in our case we will
show that the situation is more complicated when such an
ansatz is taken for the potential U(X) in the particle ratchet
(23).

The negative sign in front of €>0 in (25) is chosen in
order to achieve a positive (v), i.e., average motion to the
right. The specific combination (25) of elliptic functions is
chosen because there is no ratchet effect in two limiting
cases: For m=0 the effective potential is sinusoidal, and for
m=1 it is zero (except for a set of points with Lebesgue
measure zero). Thus we can expect that an optimal value m,,,
naturally exists in the interval 0 <m <1, under the condition
that there is any ratchet effect for the chosen set of param-
eters €,L in U(X) and A, w in the driving force.
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FIG. 1. (Color online) Mean soliton velocity vs amplitude A of
the ac force for different moduli m of the elliptic functions in the
ansatz (25) for the effective potential. The parameters used are L
=4, B=1, w=0.015, and e=-2.

Our problem now is to find the optimal modulus m, i.e.,
the optimal shape of the potential U(X) in the ODE (23),
which formally is a relativistic particle ratchet model. In Fig.
1 {v) vs A is plotted for various values of m and we can see
that the maximal speed v,,,,, gradually increases with increas-
ing m. However, when m is close to 1, there is a dramatic
increase of v,,,. The reason for this can be discussed by
considering the change of shape of U(X) in Fig. 2: When m
is increased (but is not yet close to 1) the negative slopes in
U(X) become steeper and the positive slopes become weaker.
Both together increases the asymmetry of the potential; thus
the symmetry breaking is augmented, which explains why
Umax 2rows. In fact, U(X) looks like a (smoothed) sawtooth
potential that has widely been used in the literature.

However, when m becomes close to 1, a new feature ap-
pears in U(X), namely, long flat regions. Their lengths in-
crease as m gets even closer to 1, so eventually U(X) essen-
tially exhibits two features: (1) double peaks, each consisting
of a positive and a negative peak with a steep slope in be-
tween, and (2) long flat regions between the double peaks.

A potential with similar features was proposed for a
ratchet system driven by a multiplicative white noise to en-
hance the coherent transport [33].

Before we proceed with our goal, namely, to find the op-
timal inhomogeneities which produce the above features, we

1

0.5

UX)

-~ m=0.85
--= m=0.9
— m=0.95 i
— m=0.99999

6 7 8

FIG. 2. (Color online) Effective potential (25) for different val-
ues of the modulus m of the elliptic functions; L=4, e=-2.
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FIG. 3. Mean soliton velocity vs the modulus m of the elliptic
functions in the ansatz (25) for the effective potential; L=4, A
=0.6, B=1, 0w=0.015, e=-2.

want to discuss the staircase structure of (v) vs A in Fig. 1.
This structure is described by

iL i
(v)= I jvm,,, i,j integer. (26)
The step height v,,,=L/T does not depend on the shape, but
only on the period of U(X), and on the period T=27/w of
the ac force.

Formula (26) should hold quite generally according to
most of the literature ([4] and references therein). However,
Eq. (26) was explicitly calculated only for a special case,
namely, an asymmetric sawtooth potential and a piecewise
constant driving force [34]. Our results confirm Eq. (26), and
so do the results for the effective potential stemming from
S-function inhomogeneities [19]. Moreover, we observe that
(v) changes in steps also as a function of other parameters.
For the following it will be important that (v) as a function
of m first increases, then decreases in steps (Fig. 3). This
means that v,,,, is reached for a very narrow range of m,
which we denote by [m,,]. The larger A, the closer [m,,] is
to 1. For a larger value of the frequency, w=0.05, the same
effect shows up, namely, it is found that the ratchet transport
is enhanced for m very close to 1 provided that A is not too
small.

V. OPTIMAL INHOMOGENEITIES

Our approach was to construct an array of inhomogene-
ities which produces an effective potential whose shape is
approximately equivalent to the shape of U,,, i.e., it must
exhibit the two essential features found in U, in the previ-
ous section. The required effective potential can be obtained
in four steps [here we skip working with U(X) from the 1-CC
theory and proceed directly with U(X,/) in Eq. (18)].

(1) A single box inhomogeneity produces the single peak
(17); two boxes with equal width (b,=b,=b) and equal
height, but opposite signs (h,=h,hy,==h), produce the de-
sired double-peak structure, if they are placed at positions
X1,X%; not too far separated.

(2) As to the second feature of U, the long flat regions
between the double peaks can easily be obtained by choosing
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a large period L, compared to the width of the double peaks.
For the widths discussed below, a good range is L=4-8;
here (v) depends only weakly on L.

(3) We need to make the negative slope within a double
peak very steep, and the positive slope between double peaks
very weak, because these are features of U,,. Both features
can be achieved by making the two boxes narrower and
higher (keeping the area fixed). Unfortunately, the effect of
this procedure is limited by the fact that the two peaks U(]O)
and U(ZO), which are produced by the two boxes, have a mini-
mum width of about 1 [for /=0(1)] [see Eq. (17)]. This
width is practically the same as that of the sech? peak pro-
duced by a & function inhomogeneity [see below Eq. (17)].

(4) Because of the limitations of step 3, we position the
two boxes closer together. This would make the negative
slope steeper, if there were not a partial compensation of the
positive and negative contributions U<10) and U(ZO) which re-
duces the heights of the two peaks. One can compensate this
effect by further increasing the height 4 of the boxes and thus
the peak heights. The optimal double-peak structure is pro-
duced by two very narrow boxes which are as close together
as possible, namely, touching each other without overlapping
(e.g., x;=0.8,x,=1.0,b=0.1). Then the height can be in-
creased as long as v,,,, is reached for A<1 (for the above
example h=25, see Fig. 4). There is no value in increasing
the amplitude of the driving force beyond A =1 because in
the simulations for the original partial differential equation
(1) kink-antikink pairs may then appear spontaneously and
degrade the ratchet effect (see also the end of Sec. II).

The above four steps together yield an enormous gain for
Upnay 10 the order of 300%. In Fig. 4(a) the maximal value of
(v) is 0.1528 for w=0.015, which has to be compared with
the best value 0.0382 for the case of three 6-function inho-
mogeneities with the same w [19]. The value 0.1528 for v,,,,,
is indeed quite high, taking into account that this is an aver-
age over positive and negative velocities [cf. Eq. (19)]. Even
larger values of v,,, can be obtained by choosing a small
damping parameter, but we do not consider this regime for
the reasons given at the end of Sec. II.

The above pair of very narrow and very high boxes that
touch each other produces an effective potential which can
be approximated very well by that resulting from a
&' -function inhomogeneity. This can be shown by consider-
ing in Eq. (18) the limit »— 0, h— o with finite e:=(2b)%h
for a box pair at x; and x,=x;+2b in cell n=0. The limit
yields

X1

4e X—-x X -
UOX,1) = - ~ tanh L sech? z (27)
which is identical with U®) stemming from a &'-function
inhomogeneity g,=€d' (x—x,).

VI. COMPARISON WITH SIMULATIONS

In order to check the predictions of the above collective
coordinate approach with the optimized effective potential
constructed in the previous section, we have performed
simulations for the full sine-Gordon system (1) with the box
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FIG. 4. (Color online) Mean velocity vs amplitude A of the ac
force. (a) Numerical solution of the CC equations (5)—(11) with
U(X,I) given by Eq. (18). (b) Simulations of Eq. (1) with the ex-
pression for V(x) given by Egs. (2) and (16). V(x) is shown in the
inset for L=4. The parameters used are B8=1, w=0.015, h=25, b
=0.1, x;=0.8, x,=1.0.

inhomogeneities that produce the above effective potential:
two narrow and high boxes per cell that have opposite signs
and touch each other. We have numerically solved Eq. (1)
using the Heun scheme [35] which yields the same results as
the Strauss-Vdzquez scheme [36], but considerably faster;
another advantage of the Heun scheme is the possibility to
include thermal noise [20]. The spatial and temporal integra-
tion steps were Ax=0.025 and Ar=0.005. The spatial interval
for the simulations had a length of 190 units. The simula-
tions were performed taking as initial condition a kink soli-
ton Eq. (4) at rest, which we allow to evolve. Then, after
some transient time, we compute the mean velocity integrat-
ing over a period of time. This process is repeated again by
varying the amplitude of the force, thus sweeping over the
whole interval for the force amplitude. We have checked that
the computation of the mean velocity does not change over
several periods.

The results in Fig. 4(b) show a very good qualitative
agreement with the CC approach results in Fig. 4(a). Inter-
estingly the simulation results are more sensitive to the
choice of the cell length than the CC approach results: both
the maximum v,,,, of the average velocity and its position
change more when L is increased from 4 to 8. The best value
1S U,,0c=0.172, which is 350% higher than the best result
0.0382 for the & function inhomogeneities [19]. In this case
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FIG. 5. (Color online) Mean velocity vs amplitude A of the ac
force. (a) Numerical solution of the CC equations (5)—(11). (b)
Simulations of Eq. (1) with the expression for V(x) given by Egs.
(2) and (16). The parameters used are B=1, w=0.05, b=0.1, h
=25, x,=0.8, x,= L.0.

the highest value of the soliton speed |v(#)| is about 0.5
which has to be compared with the critical velocity c=1.

So far we have only considered the case of a low fre-
quency (w=0.015) of the driving force. Here both the &
function and the box inhomogeneities produce a staircase in
(v) vs A. However, for higher frequencies the situation
changes: For w=0.05 the boxes still yield a staircase (Fig. 5)
while the & functions yield several windows [see case (b) in
Sec. II]. For w=0.1 (not shown) a two-step staircase is seen
for L=4, while two and one windows are found for L=6 and
8, respectively.

VII. SUMMARY AND CONCLUSIONS

We have studied how ratchet transport in inhomogeneous
sine-Gordon systems can be strongly enhanced, proceeding
in three steps.

(1) In a collective coordinate approach the soliton dynam-
ics was represented by a relativistic particle ratchet with an
effective potential U, which is periodic and asymmetric. Us-
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ing an ansatz in terms of Jacobi elliptic functions, the opti-
mal U for the particle ratchet was found. U,,,, exhibits essen-
tially two features: (a) double peaks consisting of a positive
and a negative peak with a steep slope in between and (b)
long flat parts between the double peaks.

(2) The inhomogeneities in the sine-Gordon system were
chosen such that they produce an effective potential which
exhibits the above features of U,,. It turned out that a very
good choice is a periodic array in which each cell contains
two very narrow and high boxes with opposite signs that
touch each other (this structure can be well approximated by
a ¢ -function). The optimization of the parameters (width
and height of the boxes and the cell length) yielded high
values for v,,,,, the maximum of the average soliton velocity
(v) as a function of the driving amplitude A. For the fre-
quency range [0.015, 0.1] v,,,, is in the order of 0.15, where
the soliton speed |v(z)| reaches values that are not far away
from the critical velocity c=1. For frequencies higher than
®=0.2 the ratchet effect vanishes.

(3) Simulations for the sine-Gordon system with the
above inhomogeneities produce results for (v) vs A which
show a very good qualitative agreement with the results of
the collective coordinate approach.

From the results that we have obtained, we propose the
following experiments on long Josephson junctions: Narrow
inhomogeneities of opposite signs can be built by microre-
sistors (critical Josephson current J. decreased) and mi-
croshorts (/. increased). So far only equidistant arrays of
either type of inhomogeneities were used, but we do not see
problems in producing arrays in which microresistors are
placed close to microshorts.

A further enhancement of v, could be achieved by a
replacement of the sinusoidal driving force f(¢) by a more
general periodic force (for homogeneous sine-Gordon sys-
tems an ansatz in terms of Jacobi elliptic functions [see be-
low Eq. (25)] yielded v,,,,,=0.16 and 0.17 in simulations and
a CC approach, respectively [37]). Work on the joint optimi-
zation of the inhomogeneities and the driving force is in
progress.
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