1,309 research outputs found

    In vitro Accelerated Aging of Composites and a Sealant

    Full text link
    The in vitro accelerated aging of conventional and microfilled composite restorative materials and a sealant was studied. Volume loss/surface area ranged from 2.0 to 7.3 x 10-3 mm3/mm2 after 900 h of aging. Surface morphology changed more dramatically for the conventional composites than for the other materials. Changes in surface chemistry as measured by FTIR-ATR were observed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67091/2/10.1177_00220345810600090701.pd

    Modeling of large area hot embossing

    Get PDF
    Today, hot embossing and injection molding belong to the established plastic molding processes in microengineering. Based on experimental findings, a variety of microstructures have been replicated so far using the processes. However, with increasing requirements regarding the embossing surface and the simultaneous decrease of the structure size down into the nanorange, increasing know-how is needed to adapt hot embossing to industrial standards. To reach this objective, a German-Canadian cooperation project has been launched to study hot embossing theoretically by a process simulation and experimentally. The present publication shall report about the first results of the simulation - the modeling and simulation of large area replication based on an eight inch microstructured mold.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    Dynamical mechanism of atrial fibrillation: a topological approach

    Get PDF
    While spiral wave breakup has been implicated in the emergence of atrial fibrillation, its role in maintaining this complex type of cardiac arrhythmia is less clear. We used the Karma model of cardiac excitation to investigate the dynamical mechanisms that sustain atrial fibrillation once it has been established. The results of our numerical study show that spatiotemporally chaotic dynamics in this regime can be described as a dynamical equilibrium between topologically distinct types of transitions that increase or decrease the number of wavelets, in general agreement with the multiple wavelets hypothesis. Surprisingly, we found that the process of continuous excitation waves breaking up into discontinuous pieces plays no role whatsoever in maintaining spatiotemporal complexity. Instead this complexity is maintained as a dynamical balance between wave coalescence -- a unique, previously unidentified, topological process that increases the number of wavelets -- and wave collapse -- a different topological process that decreases their number.Comment: 15 pages, 14 figure

    Application of regulatory sequence analysis and metabolic network analysis to the interpretation of gene expression data

    Get PDF
    We present two complementary approaches for the interpretation of clusters of co-regulated genes, such as those obtained from DNA chips and related methods. Starting from a cluster of genes with similar expression profiles, two basic questions can be asked: 1. Which mechanism is responsible for the coordinated transcriptional response of the genes? This question is approached by extracting motifs that are shared between the upstream sequences of these genes. The motifs extracted are putative cis-acting regulatory elements. 2. What is the physiological meaning for the cell to express together these genes? One way to answer the question is to search for potential metabolic pathways that could be catalyzed by the products of the genes. This can be done by selecting the genes from the cluster that code for enzymes, and trying to assemble the catalyzed reactions to form metabolic pathways. We present tools to answer these two questions, and we illustrate their use with selected examples in the yeast Saccharomyces cerevisiae. The tools are available on the web (http://ucmb.ulb.ac.be/bioinformatics/rsa-tools/; http://www.ebi.ac.uk/research/pfbp/; http://www.soi.city.ac.uk/~msch/)

    Identification of noise sources using a time domain beamforming on pneumatic, gas and electric nail guns

    Get PDF
    In the construction industry, many workers are exposed daily to harmful levels of impulsive noise from nail guns. Therefore, a better knowledge of the noise generated by these tools is required in order to propose noise reduction solutions. The objective of this work is to propose an approach for source identification using a microphone array together with a source identification algorithm based on recent development in the generalized cross-correlation technique. In addition to the pneumatic nail gun, for which sources have been partially identified in the literature, the proposed approach is applied to two other types of nail guns, an electric and a gas powered one. First, the standardized acoustic power spectrum of these three nail guns is measured for global comparison purposes and result in a ranking of the three nail guns. Second, the generalized cross-correlation technique applied to nail gun noise source identification is presented. Third, acoustic maps for successive small time segments are presented, providing a fine identification of noise sources for the three nail guns and an explanation of the observed sound power level ranking. © 2019 Institute of Noise Control Engineering

    Laboratory and field measurements of nail guns' noise emission

    Get PDF
    Field measurements and laboratory measurements using EN 12549 was presented. The rig was held in a small comfortable backpack and even if the sensors were wired to the acquisition card, the worker could work without obstruction. Between 8 and 12 trials of 10 impacts were recorded for each nailer/worker combination. Eight framing nailers and two roofing nailers were tested in the laboratory under controlled conditions as per the EN 12549 standard. From this standard, three operators were required to perform five trials of 10 nails each, with each trial lasting a period of 30 seconds. The measures were performed in a semi anechoic room where both the sound power and the sound pressure level at the worker?s ear were measured. Concerning the EN 12549 standard, it seems appropriate in order to perform representative workplace ranking of nailers following their sound power level values. Concerning the reduction of workers? noise exposure, the battery operated nailer stands out as the best choice as its level is at least 6 dBs lower than any other tested nailer in both lab and field measurements

    Three-body Interactions Improve the Prediction of Rate and Mechanism in Protein Folding Models

    Full text link
    Here we study the effects of many-body interactions on rate and mechanism in protein folding, using the results of molecular dynamics simulations on numerous coarse-grained C-alpha-model single-domain proteins. After adding three-body interactions explicitly as a perturbation to a Go-like Hamiltonian with native pair-wise interactions only, we have found 1) a significantly increased correlation with experimental phi-values and folding rates, 2) a stronger correlation of folding rate with contact order, matching the experimental range in rates when the fraction of three-body energy in the native state is ~ 20%, and 3) a considerably larger amount of 3-body energy present in Chymotripsin inhibitor than other proteins studied.Comment: 9 pages, 2 tables and 5 figure

    Gene Function Classification Using Bayesian Models with Hierarchy-Based Priors

    Get PDF
    We investigate the application of hierarchical classification schemes to the annotation of gene function based on several characteristics of protein sequences including phylogenic descriptors, sequence based attributes, and predicted secondary structure. We discuss three Bayesian models and compare their performance in terms of predictive accuracy. These models are the ordinary multinomial logit (MNL) model, a hierarchical model based on a set of nested MNL models, and a MNL model with a prior that introduces correlations between the parameters for classes that are nearby in the hierarchy. We also provide a new scheme for combining different sources of information. We use these models to predict the functional class of Open Reading Frames (ORFs) from the E. coli genome. The results from all three models show substantial improvement over previous methods, which were based on the C5 algorithm. The MNL model using a prior based on the hierarchy outperforms both the non-hierarchical MNL model and the nested MNL model. In contrast to previous attempts at combining these sources of information, our approach results in a higher accuracy rate when compared to models that use each data source alone. Together, these results show that gene function can be predicted with higher accuracy than previously achieved, using Bayesian models that incorporate suitable prior information
    • …
    corecore