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A dynamic route choice model for public transport networks with 

boarding queues 

The concepts of optimal strategy and hyperpath were born within the framework 

of static frequency-based public transport assignment, where it is assumed that 

travel times and frequencies do not change over time and no overcrowding 

occurs. However, the formation of queues at public transport stops can prevent 

passengers from boarding the first vehicle approaching and can thus lead to 

additional delays in their trip. Assuming that passengers know from previous 

experience that for certain stops/lines they will have to wait for the arrival of the 

2nd, 3rd, ..., k-th vehicle, they may alter their route choices, thus resulting in a 

different assignment of flows across the network. The aim of this paper is to 

investigate route choice behaviour changes as a result of the formation and 

dispersion of queues at stops within the framework of optimal travel strategies. A 

new model is developed, based on modifications of existing algorithms. 

1. Introduction 

It has been largely acknowledged in the last decades that urban sustainable development 

needs to overcome the dependence on the private car (Newman and Kenworthy 1999, 

European Commission 2009) and requires a modal shift towards public transport, as this 

leads to better performance over  private transport with regards to the six sub-objectives 

for sustainability (May 2001 cited Black et al. 2002).  

In the context of promoting a transfer of passenger mobility from individual to 

collective means, it is important to improve the quality of service provided (i.e. total 

travel time reduction, increased service regularity, increased comfort on board). When 

this scope cannot be pursued by building more suitable infrastructure, which  can be 

politically, financially, and environmentally constrained, Advanced Traveller 

Information Systems (ATIS) could play a major role if they were able to provide 

travellers with accurate route guidance which can consider updated and useful 

information about network conditions. At the present time this is not the case, as 



journey planners do not currently consider bus travel time which may vary with the time 

of the day due to recurrent road congestion. The current journey planners also do not 

take into account queuing time at stops and stations due to passenger congestion on the 

transit network. From an assignment perspective, this may lead to passengers changing 

their route and mode choice, time of departure and sometimes even their final 

destination, and while this is a major problem in large cities’ public transport networks, 

there does not seem to be any broad agreement in the literature on how this 

phenomenon should be modelled. 

Consequently, a step forward in the public transport modelling may be achieved 

by developing a new route choice model, as presented in this work, which is capable of 

considering travel time variability as well as the formation and dispersion of passenger 

queues at stops in densely connected transit networks. On the other hand, although the 

effects on departure time choice and mode choice are crucial for the development of a 

multimodal and dynamic assignment procedure, they are out of the scope of the present 

study. 

The application of this route choice model is twofold. On one hand it can be 

embedded in a dynamic assignment model to capture the formation and dispersion of 

passenger queues at transit stops and evaluate the resulting increase in waiting times. 

On the other hand, when queues length is estimated by means of transit assignment 

models, it can benefit dynamic journey planners, enabling them consider congestion 

patterns on the transit network.  

The rest of the paper is organised as follows. In next section, the background 

research is presented, while the methodology is explained in Section 3. In Section 4, 

numerical examples will be presented and conclusions will be drawn in Section 5. 

Details about the solution algorithm are provided in the Appendix.  



2. Background research 

Much of previous research on route choice in public transport networks has focussed on 

static conditions, where it is assumed the relevant model variables, such as travel times 

and line frequencies, are fixed, and passengers can always board the first approaching 

carrier. In this context, if no service schedule is published or services are highly 

frequent and/or unreliable, users have no explicit knowledge about carriers’ arrival time 

at transit stops. So, if there are two or more competing lines, so-called common lines 

(Chriqui and Robillard 1975), they may face the question if it is more convenient to 

board the first approaching line or wait for another, they consider more convenient.  

Some authors (Spiess 1983, Spiess 1984, Nguyen and Pallottino 1988, Spiess 

and Florian 1989) prove that, when there is this uncertainty, rather than the single 

shortest itinerary between origin and destination, route choice can be modelled as the 

selection of the optimal strategy (Spiess and Florian 1989), and graphically represented 

as the shortest hyperpath on an oriented hypergraph1 modelling the transit network 

(Nguyen and Pallottino 1988, Wu et al. 1994, Nguyen et al. 1998). 

The optimal strategy is selected pre-trip and, starting from the origin, involves 

the iterative sequence of: walking to a public transport stop or to the destination, 

selecting the attractive (Nguyen and Pallottino 1988) lines to board and, for each of 

them, the stop where to alight. Once travelling towards the destination, if two or more 

attractive lines are available at a stop, the best option is to board the first approaching 

(Spiess 1983, 1984). 

It is well known (Billi et al. 2004, Nökel and Wekeck 2007) that this definition 

of optimal travel strategy only applies when: 
                                                 

1 For a detailed review of directed hypergraphs and their applications, we refer the reader to 

Gallo et al. (1993).  



 passengers have no explicit knowledge about the carrier’s arrival times at transit 

stops and the available capacities of arriving carriers; 

 the vehicle arrivals of different lines at the stop are not synchronized, and, for 

each line, follow a Poisson distribution; 

 passenger arrivals at stops are not timed to coincide with vehicle arrivals; and 

 passengers try to minimize their total expected travel time to their destinations. 

As such, formation and dispersion of passenger queues are not captured, and the 

dependency of waiting time and passengers’ distribution among the different attractive 

lines from overcrowding is not considered. Recurrent passenger congestion is one of the 

major problems faced by large city public transport networks and the distortions 

brought about by neglecting this phenomenon can be significant, as explained by the 

following example.  

Consider a small network with two nodes, origin and destination, and two lines 

that have the same travel time to destination upon boarding (10 minutes). As detailed in 

Table I, Line 1 is more frequent but is also congested and passengers cannot board the 

first vehicle approaching. 

Table I: Line 1 and Line 2 congestion levels, average headways and travel time upon 
boarding. Line 1 is congested and passengers are not able to board the first vehicle. 

 
Average 
frequency [min-1] 

Travel time to destination 
upon boarding [min] 

Congestion level 
 

Line 1 1/3  10 Congested  

Line 2 1/6 10 Not congested 

 

If congestion is disregarded, passengers’ distribution (i.e. the probability to 

board Line 1 or Line 2) and total expected waiting time solely depend on the average 

frequencies of the services, as in (Nguyen Pallottino 1988, Spiess and Florian 1989), 



and their values are shown in Table II. The results are clearly distorted because, 

although congested, Line 1 attracts the major percentage of passengers and its 

congestion would become even more severe. Thus, if embedded in an assignment 

procedure, this route choice would not lead to equilibrium conditions. 

Table II: Line 1 and Line 2 boarding probability and total expected waiting time at the 
considered stop. 

 Line 1 Line 2 Origin Stop 

Boarding probability 0.67  0.33 - 

Total Expected waiting time 
[min] - - 

2  

 

Most of the research carried out to overcome this shortcoming in the context 

dense public transport networks, where common lines may be available from the same 

stop, has dealt with overcrowding in case of passengers mingling at the stop (De Cea 

and Fernandez 1993, Marcotte and Nguyen 1998, Cominetti and Correa 2001, Kurauchi 

et al. 2003, Cepeda et al. 2006, Schmöcker et al. 2008, Leurent et al. 2011, Leurent and 

Benezech 2011). This behavioural assumption implies that no waiting priority is 

respected and, in case of oversaturation, all passengers waiting at a stop have the same 

probability to board the next carrier to approach (provided the carrier is attractive). Thus 

a possible simple solution (De Cea and Fernandez 1993) would consider the effective 

frequency, namely the line frequency perceived by waiting passengers that decreases as 

the probability of not boarding its first arriving carrier increases. If the stop in the 

previous example is considered and we assume the ‘fail-to-board’ (Schmöcker et al. 

2008) probability for Line 1 is 0.5, while passengers are always able to board a carrier 

of Line 2, then effective frequencies, passengers’ distribution and total expected waiting 

time are those displayed in Table III. The share of Line 1 decreases of about 30% in 



favour of Line 2 and, as expected, the consideration of overcrowding leads to an 

increase of the total expected waiting time. 

Table III : Effective frequency and boarding probability of Line 1 and Line 2; total 
expected waiting time at the considered stop. 

 Line 1 Line 2 Origin Stop 

Effective frequency [min-1] 1/6 1/6 - 

Boarding probability 0.5 0.5 - 

Total Expected waiting time 
[min] 

- - 3  

 

For stations and stops with large platforms, it is acceptable to assume passengers 

mingle and apply results from the afore-mentioned studies. However, in urban bus 

networks the stop layout is usually such that, when passenger congestion occurs, users 

arriving at the stop would join a FIFO (first-in first-out) queue and board the first line of 

their attractive set that becomes available. Models based on the mingling queuing 

protocol are clearly not applicable to the latter scenario. Early attempts to overcome this 

shortcoming are made by Gendreau (1984) and Bouzaïene-Ayari (1988) by using a bulk 

queue model, but its complexity prevents practical applications of the models. In a latter 

study, Leurent and Benezech (2011) developed a model based on the ‘attractivity 

threshold’, but in this case rather than assuming the route is chosen pre-trip, authors 

consider a completely adaptive behaviour at transit stops. 

On the other hand, we prove that in the context of commuting passengers, who 

know by previous experience the number of carrier passages they must let go before 

being able to board, expected waiting times and passenger distribution among attractive 

lines may be calculated by extending the formulas presented by Nguyen and Pallottino 

(1988) and Spiess and Florian (1989). Results obtained with our model will be 

compared with those detailed in Table II (uncongested model) and Table III (effective 



frequency model), and it will be shown that the FIFO queue model penalises the 

congested line, in terms of passengers’ distribution, more than the uncongested and the 

effective frequency model, while the total expected waiting time increases.  

Prior to that, the proposed route choice model will be introduced in the next 

section, together with the mathematical framework and the graph representing the 

transit network. 

 

3. Methodology 

3.1 Network model: notation and definitions 

The transit network comprises a set of lines ℑ ⊆ ℵ and, together with the pedestrian 

network, it is represented by a directed hypergraph (Gallo et al. 1993) HG = {N, E} , 

where N = { i | i = 1, 2, …, n}  is the node set and E = {e | e = 1, 2,  …, m} is the 

hyperarc set. 

 Ni
+ = { j | (i,j)  E}  

 Ni
– = { j | (j,i)  E}   

 e: generic hyperarc, with TL(e)  N defined as the tail and HD(e)  N 

defined as the head of the hyperarc. It should be noted that normal arcs are a 

sub-set of hyperarcs for which |HD(e)| = 1, where |HD(e)| is defined as the 

cardinality of the hyperarc (Nielsen 2004). For reasons of clarity and simplicity, 

all the hyperarcs for which |HD(e)| = 1 will henceforth be called ‘arcs’, and 

‘hyperarcs’ only those for which |HD(e)| > 1. A generic hyperarc may also be 

defined as e = (i, Lip), where i  N and Lip  Ni
+ 

 Hp: hyperpath connecting a single origin destination pair (r,s). 



The following sub-sets of N and E are defined: 

 CN centroid nodes 

 PN: pedestrian nodes;  

 RN: stop nodes; 

 LN: line nodes.  

 PE: pedestrian arcs; 

 LE: line arcs. Each arc e  LE is uniquely associated with a line ℓ  ℑ; 

 DE: dwelling arcs;  

 DuE: dummy arcs, connecting the stop nodes to the pedestrian network 

 SE: support hyperarcs (Bellei et al. 2000), representing all the lines sharing a 

stop. Namely, for the generic stop node i, a support hyperarc a is defined such 

that TL(a) = i and HD(a) = Ni
+. Each branch b = (i,j) of a support hyperarc is 

also called boarding arc (b  BE); 

 WE: waiting hyperarcs (Gentile et al. 2005a), representing only the attractive 

lines serving the stop. Considering the same stop node as before, the associated 

waiting hyperarc c is defined such that TL(c) = i and HD(c) = Lip
*() ⊆Ni

+, 

where Lip
*() represents the set of attractive lines serving the stop node i for 

passengers travelling along the hyperpath Hp at time . 
 AE: alighting arcs. 

It should be noted that in the dynamic and congested scenario the branches of 

the hyperarc (Figure1) do not only represent the ‘average delay due to the fact that the 

transit service is not continuously available over time’, but also the ‘time spent by users 

queuing at the stop and waiting that the service become actually available to them’ 

(Meschini et al 2007). Moreover, for modelling purposes, we assume that passengers 



arriving at the stop join a unique, mixed queue regardless of their particular attractive 

line set. In this case, overtaking is possible among passengers having different attractive 

sets; however, any competition among passengers sharing the same attractive set is 

solved by applying the FIFO rule. (Trozzi et al 2010). 

 

Figure 1: Representation of a stop in the hypergraph. 

 

In order to represent time-dependent travel times, waiting times, etc., the 

following dynamic variables are also introduced: 

 kij(): number of vehicle arrivals that passengers, arriving at stop node i at time 

, have to wait before boarding the attractive line associated with the line node j; 

 tij(): exit time from arc h = (i,j)  E for users entering it at time ; 
 cij(): travel time of arc h = (i,j)  E for users entering it at time . Namely, if 

the arc is entered at time and the exit time is tij(), then cij() = tij() – ;  

 ij(): mean frequency at time  and stop i of the public transport line 

associated with line node j; 



 ije(): diversion probability. This is the probability of using at time  the 

boarding arc b = (i,j), which is a branch of hyperarc e = (i, Lip); 

 ie(): expected waiting time at the stop node i and time , if  the considered 

hyperarc is e=(i, Lip) ; 

 ije(): partial waiting time at the stop node i and time , if  the considered 

hyperarc is e=(i, Lip) ; 

 i| je(): expected waiting time at the stop node i and time  conditional to the 

event of boarding line represented by node j out of the set represented by 

hyperarc e=(i, Lip)  ; 

 ti| je(): boarding time for users arriving at stop i at time , conditional to the 

event of boarding line represented by node j out of the set represented by 

hyperarc e=(i, Lip). Namely: ti| je() =  + i| je(); 
 gp

is(): expected actual cost of the hyperpath Hp to destination s for users leaving 

node i at time ; 
 Sis(): expected travel cost of the minimal hyperpath to destination s for users 

leaving node i at time . 

3.2 Problem definition 

In the original formulation of shortest hyperpaths (Nguyen and Pallottino 1988, Spiess 

and Florian 1989), it is acknowledged that at any intermediate stop, passengers 

travelling towards a specific destination would only consider the subset of attractive 

li nes, which are used in order to minimize the total expected travel time to destination, 

and would board whichever attractive line comes first. Consequently, each elemental 

itinerary is a particular realisation of the optimal strategy or, from a graphical point of 

view, a single path of the shortest hyperpath. 



Definition 

A subgraph Hp = (Np, Ep, p()), where Np  N, Ep  E and p() = (ij e()) a real 

value vector of dimension (Ep x 1) is a dynamic hyperpath connecting origin r  CNp 

and destination s  CNp, if: 

 Hp 
is acyclic with at least one arc; 

 node r has no predecessors and node s has no successors; 

 for every node i  Np \ {r, s} there is a hyperpath from r to s traversing i. Each 

node has at most one immediate successor hyperarc: if i  RNp then its 

successor has cardinality equal to one, otherwise the successor hyperarc has 

cardinality equal or greater than one.; 

 the elements of the characteristic vector p() satisfy the conditions: 
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and the value of its components depends on the time  they are evaluated; 

 travel times cij() associated to arcs (i,j)  Ep and waitinig times ie() 
associated to nodes i  RNp depend on the entering time  they are evaluated; 

waiting times ie() also depend on the considered hyperarc e = (i, Lip())  Ep. 

In the static context, it is shown that the total travel time of the generic 

hyperpath Hp can be computed by explicitly taking into account all the elemental paths ℓ 

forming it (Nguyen and Pallottino 1988, 1989). Therefore, if Qp is the set of such paths, 

ℓ is the probability of choosing the elemental path ℓ, and ℓ is its travel time, the travel 

time of hyperpath Hp is: 
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On the other hand, ℓ can be expressed as the sum of travel and waiting times on 

the path’s arcs and nodes: 
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where ij ℓ = 1 if arc h = (i,j) belongs to path ℓ, otherwise ijℓ = 0, and 'iℓ = 1 if 

path ℓ traverses node i, otherwise 'iℓ = 0. Thus the following expression of the 

hyperpath’s total travel time can be obtained: 
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In a network with overcrowding, as considered here, travel times depend on the 

time the arc is entered. Consequently, it can happen that the same node is traversed by 

different paths at different times and the travel cost associated with it has different 

values. Hence, the above definition of the hyperpath’s total travel time does not apply to 

the dynamic scenario. Nevertheless, by extending the local recursive formula (the so-

called generalised Bellman equation) given in Nguyen and Pallottino (1988, 1989) to 

the dynamic context, a sequential definition of the dynamic hyperpath’s travel time 

structure is obtained. What is more, the equation enables obtaining the result whilst 

avoiding path enumeration, thus decreasing the computational burden. 

Definition 

The total travel time of the dynamic hyperpath Hp connecting r to s at time  is 

sequentially defined in reverse topological order as: 
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where: 

 ie() is the total expected waiting (and queuing) time at stop i associated with 

hyperarc e = (i, Lip) ;  

 gp
HD(e)s(tiHD(e)( )) is the remaining cost of the hyperpath, upon boarding one of 

the attractive line(s) from stop node i; 

 Lip is the particular set of competing lines, that passengers might consider 

boarding at stop i when travelling along hyperpath Hp. 

3.3 Stop model 

3.3.1 Probability distribution functions of the waiting times 

It should be noted that the above formulation of the hyperpath travel time structure and 

computation is independent of specific values given to the diversion probabilities ije(), 
and expected waiting costs ie(). These variables are specified by the stop model and 

depend on the particular assumptions adopted for modelling the passenger and the 

public transport vehicle arrivals at the stop node, and on the passenger boarding 

mechanism.  



In our model, the basic hypotheses about carrier and passenger arrivals (Nguyen 

and Pallottino 1988, Spiess and Florian 1989) are not changed, but passengers waiting 

at a stop may be prevented from boarding an approaching carrier because of 

overcrowding. If the stop layout is such that passengers have to join a FIFO queue, then 

the user coming at stop i at time  has to wait for the kij()-th carrier of line j. 

As proved by Larson and Odoni (1981, p. 54), the waiting time before the kij()th 

carrier arrival occurs is Erlang-distributed with parameters kij() and 1/ij(), 
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where w is the stochastic variable representing the waiting time.  

As such, considering hyperarc e = (i, Lip()), the diversion probability can be 

expressed by the following formula: 

  
dwwFwf

jLz
izijije

ip

 




0 \

 ),(),()(   (7) 

where F iz(w,) is the survival function of the Erlang-distributed waiting time for the 

branch b=(i, z) of hyperarc e = (i, Lip). 

On the other hand, the total expected waiting time for the considered stop i and 

hyperarc e is equal to: 
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Recalling the definition of conditional expected value (Loève 1978, Melotto 

2004), it is also possible to write: 
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To further stress the implication of the proposed stop model, consider the small example 

network of Section 2 and the four scenarios summarised in Table IV.  

Table IV: Average headways, k values and travel time upon boarding for the two lines 
in the considered scenarios. 

 

Line 1 
Average 

frequency 
[min-1] 

Line 1 
k 
 

Line 1 
Travel time 

upon boarding 
[min] 

Line 2 
Average 

frequency 
[min-1] 

Line 2 
k 
 

Line 2 
Travel time 

upon boarding 
[min] 

S 1 1/6 1 10  1/6 1 10  

S 2 1/3 2 10  1/6 1 10  

S 3 1/2 3 10  1/6 1 10  

S 4 1 6 10  1/6 1 10  

 

Table V Boarding probabilities, conditional expected waiting times and total expected 
waiting time at the stop for the considered scenarios. 

  i je() θi| je() [min] θie() [min] 

S 1 Line 1 0.50 3.00 3.00 



Line 2 0.50 3.00 3.00 

S 2 
Line 1 0.45 3.99 3.33 

Line 2 0.55 2.81 3.33 

S 3 
Line 1 0.42 4.50 3.47 

Line 2 0.58 2.72 3.47 

S 4 
Line 1 0.40 5.13 3.62 

Line 2 0.60 2.62 3.62 

 

Scenario 2 is the same considered in Section 2. As displayed in Table V, the 

probability to board Line 1 is not only lower than the value calculated with the 

uncongested model (Table II), but also lower than the value calculated with the 

effective frequency model (Table III). On the other hand, the opposite holds for the total 

expected waiting time.  

This phenomenon may be explained with the properties of the Erlang and 

exponential distributions. In fact, if k = 2 and  = 1/3min for Line 1, this service would 

be boarded only in case both vehicles of Line 1 pass with an headway shorter than the 

average value of three minutes. However, this event is less probable than one vehicle of 

Line 2 arriving before its average inter-arrival time (six minutes). Moreover, if the mean 

of the Erlang distribution is constant (in our case, k/ = 6) and k → ∞, the waiting time 

before boarding tends to be deterministic, thus θi| je() for Line 1 increases and tends to 

kline1/line1. 

On the other hand, the boarding probability for Line 2 tends to equation (12),  

 dwwf

linek

lineline  line1

1

0

22  ),()(
   (12) 



where, kline1/ line1 = 1/ line2 is also the expected value of fline2(w, ). Because the 

expected value of an exponential distribution is always lower than its median, the 

boarding probability of Line 2 progressively increases with k line1 (for constant k line2 = 

1), while π line1 decreases. 

3.3.2 Attractive Set 

In general, the above expressions of the diversion probabilities and expected waiting 

times can be applied to any subset of Ni
+, however, only a specific subset L*

ip()  Ni
+ 

is associated with the minimum travel time to destination at time . This set is defined 

attractive and includes all the lines nodes that make up the head of the waiting hyperarc 

associated to the stop node considered. 

Recalling the definition of an attractive set given in (Nguyen and Pallottino 

1988), we can write: 
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Consequently, in order to determine L*
ip(), it is in general necessary to compute 

gis
p() for all the possible subsets of Ni

+. However, at least for the uncongested static 

case, it is counter-intuitive to exclude a line from L*
ip() if it has a shorter remaining 

travel time than any other attractive one. Therefore, it is possible to solve the 

combinatorial problem described above through a greedy approach (Spiess and Florian 

1989, Nguyen and Pallottino 1988, Chriqui and Robillard 1975). Namely, the lines are 

processed in ascending order of their travel time upon boarding and the progressive 



calculation of the values of ij e, ie and gis
p is stopped as soon as the addition of the next 

line increases the value of gis
p. At this point, the cost is minimal (Sis) and the set of lines 

corresponds to the attractive set. 

The correctness of the greedy method, in the static case, depends on the shape of 

the waiting time pdf (exponential). By contrast, in the dynamic scenario the only exact 

method of finding L*
ip() requires the enumeration of all the possible combination of 

lines serving the considered stop. Greedy-type heuristics could be applied also in the 

time-dependent case to overcome the computational complexity arising from the exact 

solution of the problem, however this is out of the scope of the present work. 

 

4. Numerical Example 

The Decreasing Order of Time (DOT) method, presented by Chabini (1998), which has 

been analytically proved to be the most efficient solution method for the all-to-one 

search for every possible arrival time, was extended to the time-dependent shortest 

hyperpath problem in order to devise a solution algorithm for the example considered in 

this section. 

Although the proposed model has a continuous time representation, a discrete-

time representation for its numerical solution has been adopted. The main idea is to 

divide the analysis period AP = [0, Θ] into T time intervals, such that AP = 

{ T-1}, with  = 0 and T-1 = Θ, and to replicate the network along the 

time dimension, forming a time-expanded hypergraph HGT containing vertexes in the 

form (i, ), and edges in the form ((i, ), (j, tij())).  
If time intervals are short enough to ensure that the exit time of a generic edge 

tij() is not earlier than the next interval , for   T-2, it is ensured that the network 

is cycle-free and the vertex chronological ordering is equivalent to the topological one. 



Thus, HGT  is scanned starting from the last temporal layer to the value assumed for  =  

 and, within the generic layer, no topological order is respected. When a generic 

vertex (i, ) is visited, its forward star is scanned in order to set the minimal travel cost 

to destination and the successive edge by means of equation (13) (refer to the appendix 

for a detailed formulation of the algorithm). 

Such algorithm has been applied to the network used by Spiess and Florian 

(1989) in their seminal work (Figure 2) in order to find optimal travel strategies and 

calculate travel times from each node to destination (node 16).  

 
Figure 2: Example network, the graphic representation is consistent with Figure 1. 

 
Figure 3: Optimal strategy found for the static case, expected total travel time from each 
intermediate node to the destination and diversion probabilities at the stop nodes. 



The results obtained in the static and uncongested scenario, with reference to 

destination node 16, are summarised in Figure 3: for each stop the waiting hyperarc is 

depicted, Si indicates the total expected travel time from node i to destination and i-j is 

the probability to traverse the boarding arc (i, j). 

Table VI: Time dependent travel variables for each line arc of the example network: in-
vehicle travel time, average frequency and number of passages to be waited before 
boarding (k). 

Time of 
the day 

Travel variable Arc 3 
(4,13) 

Arc 4 
(5,6) 

Arc 9 
(7,9) 

Arc 10 
(8,10) 

Arc 16 
(11,14) 

Arc 17 
(12,15) 

8:00-08:30 Travel time [min] 30 7 6 4 4 15 
8:00-08:30 Freq. [min-1] 1/3 1/6 1/6 1/15 1/15 1/3 
8:00-08:30 k 2 1 1 1 2 1 
8:30-09:00 Travel time [min] 35 7 6 4 4 15 
8:30-09:00 Freq.[min-1] 1/3 1/6 1/6 1/15 1/10 1/3 
8:30-09:00 k 3 1 1 1 2 2 
9:00-09:30 Travel time [min] 35 7 6 4 4 10 
9:00-09:30 Freq. [min-1] 1/3 1/6 1/6 1/15 1/5 1/3 
9:00-09:30 k 2 1 1 1 2 1 
 

In order to compare static conditions with results obtained when hypothesising 

time-dependence of passenger congestion and travel variables within the day, the 

morning peak [08:00 –9:30] is divided into one-minute intervals. Changes in travel 

conditions are assumed to occur only at 08:00, 08:30, and 09:00, as shown in Table VI, 

while outside the analysis period travel variables are assumed to remain constant and 

have the same values as in the uncongested scenario. 

Results, summarised in Figures 4-5-6, show that the change in travel variables 

does not only affect the expected travel time to the destination and the boarding 

probability, but also the alternatives included in the optimal strategy. Notably, between 

08:00 and 08:30, because of congestion at stop 3, passengers waiting at stop 2 do not 

include Line 001 in their attractive set. Instead, they prefer boarding Line 003 so as to 

avoid a transfer at stop 3 and the associated long waiting time. Also, between 08:30 and 



09:00, because of the increased travel time upon boarding and heavy (k = 3) congestion, 

Line 002 is excluded from the attractive set at stop 1 and is not even re-included after 

09:00, when congestion slightly decreases (k = 2). Finally, between 09:00 and 09:30, 

the total expected waiting time at stop 3 remarkably decreases, because Line 004 

becomes more frequent and congestion on Line 003 has dissipated. Consequently, 

passengers waiting at stop 2 now choose to make a transfer at stop 3 and both lines (001 

and 003) are included in the attractive set. 

 
Figure 4: Optimal strategy found between 08:00 and 08:30, expected total travel time 
from each intermediate node to the destination and diversion probabilities at the stop 
nodes. 

 
Figure 5: Optimal strategy found between 08:30 and 09:00, expected total travel time 
from each intermediate node to the destination and diversion probabilities at the stop 
nodes. 



 

Figure 6: Optimal strategy found between 09:00 and 09:30, expected total travel time 
from each intermediate node to the destination and diversion probabilities at the stop 
nodes. 

 

5. Conclusions 

Given the importance of travel time variability in the traveller route and mode 

decisions, this paper presents a dynamic route choice model for public transport 

networks, in which travel variables, such as on-board travel times and frequencies, vary 

with time, and in which queues may form at public transport stops due to overcrowding, 

hindering passengers to board the first available line of their choice.  

The model reproduces route choice of commuting passengers that know by previous 

experience the number of passages they must let go, at each stop, before being able to 

board every line of their attractive set. In case of constant variables, the results from the 

static algorithm by Spiess and Florian (1989) are reproduced. However changes in the 

shortest hyperpath are clearly shown when travel variables become dynamic and/or 

queuing at stops is considered. 

In the example given, the combinatorial problem of selecting, at each stop, the 

set of attractive lines, is solved by means of an exact procedure. However, when 



applying the model in large-scale scenarios, using real network and traffic variables 

data, heuristics are needed to speed up the computation.  

Although the expected travel time is an important factor affecting the travellers’ 

route choice, as proved by the numerical example, many studies have found that the 

reliability of travel time due to non-recurrent congestion can be even more important. 

Indeed a “wrong” choice of route or mode can result in a significant delay, which may 

have severe consequences for the traveller (e.g. late arrival at the workplace). Equally, 

some groups of travellers may be particularly adverse to discomfort on board due to 

overcrowding (e.g. elderly travellers, parents travelling with your children …) and 

decide to change their route and/or departure time according to network conditions. As 

such, future developments will concentrate in the inclusion of these factors in a multi-

class route choice model coupled with departure time choice model in public transport 

networks. 

Also, within the same context, the method will be tested in large-scale scenarios, 

using real network and traffic variables data, and its potential of application to real-time 

journey planning will be investigated. 

 

6. Appendix: the solution algorithm  

The variable list of the algorithm is: 

 :  temporal layer index 

 Int: temporal layer length in minutes 

 s: destination node  

 i: generic node 

 FS(i): set of (hyper)arcs belonging to the forward star of node i  



 a: generic hyperarc, where a  FS(i)  

 b: branch (i,j) of the generic hyperarc a  FS(i), where i  RN  

 c(i,): waiting hyperarc from stop node i at time interval .  

 HD(c(i,)) = Lip
*() 

 suc(i,):successor arc of the generic node i at time interval , where i  RN 

 h: generic arc, where h  FS(i)  and i  RN 

 gis(): current travel cost from generic node i to destination s at time interval  
 Sis(): minimum travel cost from generic node i to destination s at time interval 

   

 Sis
stat: minimum travel cost from generic node i to destination s at time interval 

   

 gis(j,a,): travel cost from i to s if passengers travel along branch b=(i,j) of 

hyperarc a at time interval 

The solution algorithm for the time-dependent all-to-one shortest hyperpath 

problem for every possible arrival time is detailed here. 

Step 0 (Static pre-processing – Initialisation): ∀ i  N \ {s} 

Calculate Sis() = Sis
stat

 

 ∀   [0,T -2] 

 Set Sss() = 0, suc(s,) =  

  ∀ i  N \ {s}  

    Set Sis() =  

Step 1 (Hyperarcs’ dynamic attributes): ∀   [0,T -2] 

  ∀ i  RN 



   ∀ a  FS(i) 

    ∀ b =  (i,j) ⊆ a 

     Calculate ija() with eq. (7) 

     Calculate ija() with eq. (11) 

     ia() =ia() + ija() 
Step 2 (Calculate hyperpath travel time): ∀   [0,T-2] 

  ∀ i  N \ {s} 

   If i  RN, ∀ a  FS(i) 

    ∀ b =  (i,j) ⊆ a 

     If  [[i| ja() / Int]]  > 1  

      ti| ja() = [[i| ja() / Int]] +  
       
     Else 

      ti| ja() =  + 1. 

     If ti| ja() <  and  
     gj(ti| ja()) <   

      gis(j,a,) = gj(tija()) 
     Else 

      gis(j,a,) = Sjs
stat. 

     gis() = gi() +  
     gis(j,a,).ija() 
  If Sis() > gp

is() then 

   Sis() = gp
is() And c(i,) = a  

   Else if i  RN, ∀ h  FS(i) 

    If [[ cij() / Int]]  > 1 



     tij() = [[ cij() / Int]] +  
    Else 

     tij() =  + 1 

    End if 

     gis() = cij() + gjs(tij()) 
    If Sis() > gis() 
     Sis() = gis() and 

suc(i,) = h 
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