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A dynamic route choice model for public transport networ ks with

boarding queues

The concepts of optimal strategy and hyperpath were born within the framework
of static frequency-based public transport assignment, where it is assumed that
travel times and frequencies do not change over time and no overcrowding
occurs. However, the formation of queues at public transport stops can prevent
passengers from boarding the first vehicle approaching and can thus lead to
additional delays in their trip. Assuming that passengers know from previous
experience that for certain stops/lines they will have to wait for theahoi the

2nd, 3rd, ..., ¥ vehicle, they may alter their route choices, thus resulting in a
different assignment of flows across the network. The aim of this paper is to
investigate route choice behaviour changes as a result of the formation and
dispersion of queues at stops within the framework of optimal travel strat&gies.

new model is developed, based on modifications of existing algorithms.

1. Introduction

It has been largely acknowledged in the last decades that urban sustainable development
needs to overcome the dependence on the private car (Newman and Kenworthy 1999,
European Commission 2009) and requires a modal shift towards public transport, as this
leads to better performance over private transport with regards to thebspbjectives

for sustainabilityMay 2001 cited Blaclkt al 2002).

In the context of promoting a transfer of passenger mobility from individual to
collective means, it is important to improve the quality of service provided (i.e. total
travel time reduction, increased service regularity, increased comfort on board). When
this scope cannot be pursued by building more suitable infrastructure, which can be
politically, financially, and environmentally constrained, Advanced Traveller
Information Systems (ATIS) could play a major role if they were able to provide
travellers with accurate route guidance which can consider updated and useful

information about network conditions. At the present time this is not the case, as



journey planners do not currently consider bus travel time which may vary with the time

of the day due to recurrent road congestion. The current journey planners also do not
take into account queuing time at stops and stations due to passenger congestion on the
transit network. From an assignment perspective, this may lead to passengers changing
their route and mode choice, time of departure and sometimes even their final
destination, and while this is a major problem in large cities’ public transport networks,

there does not seem to be any broad agreement in the literature on how this
phenomenon should be modelled.

Consequently, a step forward in the public transport modelling may be achieved
by developing a new route choice model, as presented in this work, which is capable of
considering travel time variability as well as the formation and dispersion of passenger
gueues at stops in densely connected transit networks. On the other hand, although the
effects on departure time choice and mode choice are crucial for the development of a
multimodal and dynamic assignment procedure, they are out of the scope of the present
study.

The application of this route choice model is twofold. On one fitagdn be
embedded in a dynamic assignment model to capture the formation and dispersion of
passenger queues at transit stops and evaluate the resulting increase in waiting times.
On the other hand, when queues length is estimated by means of transit assignment
models, it can benefilynamic journey planners, enabling them consider congestion
patterns on the transit network.

The rest of the paper is organised as follows. In next section, the background
research is presented, while the methodology is explained in Section 3. In Section 4,
numerical examples will be presented and conclusions will be drawn in Section 5.

Details about the solution algorithm are provided in the Appendix.



2. Background research

Much of previous research on route choice in public transport networks has focussed on
static conditions, where it is assumed the relevant model variables, such as travel times
and line frequencies, are fixed, and passengers can always board the first approaching
carrier. In this context, if no service schedule is published or services are highly
frequert and/or unreliableysers have no explicit knowledge about carriers’ arrival time
at transit stops. So, if there are two or more competing lines, so-caliedonlines
(Chriqui and Robillard 1975), they may face the question if it is more convenient to
board the first approaching line or wait for another, they consider more convenient.

Some authors (Spiess 1983, Spiess 1984, Nguyen and Pallottino 1988, Spiess
and Florian 1989) prove that, when there is this uncertainty, rather than the single
shortest itinerary between origin and destination, route choice can be modelled as the
selection of theptimal strategySpiess and Florian 1989), and graphically represented
as theshortest hyperpation an oriented hypergrapmodelling the transit network
(Nguyen and Pallottino 1988, Wi al 1994, Nguyeret al 1998).

The optimal strategy is selectpde-trip and, starting from the origin, involves
the iterative sequence of. walking to a public transport stop or to the destination,
selecting theattractive (Nguyen and Pallottino 1988) lines to board and, for each of
them, the stop where to alight. Once travelling towards the destination, if two or more
attractive lines are available at a stop, the best option is to board the first approaching
(Spiess 1983, 1984).

It is well known (Billi et al 2004, N6kel and Wekeck 2007) that this definition

of optimal travel strategy only applies when:

! For a detailed review of directed hypergraphs and their applications, we refer the reader to
Galloet al.(1993).



e passengers have no explicit knowledge about the carrier’s arrival times at transit
stops and the available capacities of arriving carriers;

e the vehicle arrivals of different lines at the stop are not synchronized, and, for
each line, follow a Poisson distribution;

e passenger arrivals at stops are not timed to coincide with vehicle arrivals; and

e passengers try to minimize their total expected travel time to their destinations.

As such, formation and dispersion of passenger queues are not captured, and the
dependency of waiting time ampdssengers’ distribution among the differemtttractive
lines from overcrowding is not considered. Recurrent passenger congestion is one of the
major problems faced by large city public transport networks and the distortions
brought about by neglecting this phenomenon can be significant, as explained by the
following example.

Consider a small network with two nodes, origin and destination, and two lines
that have the same travel time to destination upon boarding (10 minutes). As detailed in
Table I, Line 1 is more frequent but is also congested and passengers cannot board the

first vehicle approaching.

Table I: Line 1 and Line 2 congestion levels, average headways and travel time upon
boarding. Line 1 is congested and passengers are not able to board the first vehicle.

Average Travel time to destination Congestion level
frequency [mint] | upon boarding [min]

Line 1 1/3 10 Congested

Line 2 1/6 10 Not congested

If congestion is disregardegbassengers’ distribution (i.e. the probability to
board Line 1 or Line 2) and total expected waiting time solely depend on the average

frequencies of the services, as in (Nguyen Pallottino 1988, Spiess and Florian 1989),



and their values are shown in Table Il. The results are clearly distorted because,
although congested, Line 1 attracts the major percentage of passengers and its
congestion would become even more severe. Thus, if embedded in an assignment

procedure, this route choice would not lead to equilibrium conditions.

Table II: Line 1 and Line 2 boarding probability and total expected waiting time at the
considered stop.

Line 1 Line 2 Origin Stop
Boarding probability 0.67 0.33 -
Total Expected waiting time 2
[min] - -

Most of the research carried out to overcome this shortcoming in the context
dense public transport networks, whemmmonlines may be available from the same
stop, has dealt with overcrowding in case of passengegling at the stop (De Cea
and Fernandez 1993, Marcotte and Nguyen 1998, Cominetti and Correa 2001, Kurauchi
et al 2003, Cepedat al 2006, Schmockest al 2008, Leurengt al 2011, Leurent and
Benezech 2011). This behavioural assumption implies that no waiting priority is
respected and, in case of oversaturation, all passengers waiting at a stop have the same
probability to board the next carrier to approach (provided the carrier is attractive). Thus
a possible simple solution (De Cea and Fernandez 1993) would consicdie thige
frequency namely the line frequency perceived by waiting passengers that decreases as
the probability of not boarding its first arriving carrier increases. If the stop in the
previous example is considered and we assumefdileo-board (Schmoéckeret al
2008) probability for Line 1 is 0.5, while passengers are always able to board a carrier
of Line 2, then effectivérequencies, passengers’ distribution and total expected waiting

time are those displayed in Table Ill. The share of Line 1 decreases of about 30% in



favour of Line 2 and, as expected, the consideration of overcrowding leads to an

increase of the total expected waiting time.

Tablelll: Effective frequency and boarding probability of Line 1 and Line 2; total
expected waiting time at the considered stop.

Line 1 Line 2 Origin Stop
Effective frequency [mif] 1/6 1/6 -
Boarding probability 0.5 0.5 -
Total Expected waiting time| - - 3
[min]

For stations and stops with large platforms, it is acceptable to assume passengers
mingle and apply results from the afore-mentioned studies. However, in urban bus
networks the stop layout is usually such that, when passenger congestion occurs, users
arriving at the stop would join a FIF®@rét-in first-out) queue and board the first line of
their attractive set that becomes available. Models based on the mingling queuing
protocol are clearly not applicablettee latter scenario. Early attempts to overcome this
shortcoming are made by Gendreau (1984) and Bouzaiene-Ayari (1988) by using a bulk
gueue model, but its complexity prevents practical applications of the models. In a latter
study, Leurent and Benezech (2011) developed a model based oattthetivity
threshold, but in this case rather than assuming the route is clpgemip, authors
consider a completelydaptivebehaviour at transit stops.

On the other hand, we prove that in the context of commuting passengers, who
know by previous experience the number of carrier passages they must let go before
being able to board, expected waiting times and passenger distribution among attractive
lines may be calculated by extending the formulas presented by Nguyen and Pallottino
(1988) and Spiess and Florian (1989). Results obtained with our model will be

compared with those detailed in Table Il (uncongested model) and Table Il (effective



frequency model), and it will be shown that the FIFO queue model penalises the
congested linein terms of passengers’ distribution, more than the uncongested and the
effective frequency model, while the total expected waiting time increases.

Prior to that, the proposed route choice model will be introduced in the next
section, together with the mathematical framework and the graph representing the

transit network.

3. M ethodology

3.1 Network model: notation and definitions

The transit network comprises a set of lile€ X and, together with the pedestrian
network, it is represented by a directbgipergraph(Gallo et al. 1993)HG = {N, E},
whereN = {i |i=1,2, ..., n} is the node set anl = {e|e =1, 2, ..., m} is the

hyperarc set.

e N"={j[(,))eE}

e N={j|(.i)eE}

o € generic hyperarc, witifL(e) € N defined as the tail andD(e) c N
defined as the head of the hyperarc. It should be noted that normal arcs are a
sub-set of hyperarcs for whichip(e)|] = 1, whereHD(e)| is defined as the
cardinality of the hyperarc (Nielsen 2004). For reasons of clarity and simplicity,
all the hyperarcs for whictHP(e)| = 1 will henceforth be callethrcs, and
‘hyperarcs only those for whichHD(e)| > 1 A generic hyperarc may also be
defined a = (i, Lip), wherei e N andLi, = Ni*

e Hp:  hyperpath connecting a single origin destination pasy.



The following sub-sets df andE are defined:

e CN centroid nodes

e PN pedestrian nodes;

e RN: stop nodes;

e LN: line nodes.

e PE pedestrian arcs;

e LE: line arcs. Each are LE is uniquely associated with a lifies J;

e DE: dwelling arcs;

e DuE dummy arcs, connecting the stop nodes to the pedestrian network

e SE  support hyperarcs (Bellet al.2000), representing all the lines sharing a
stop. Namely, for the generic stop nagde support hyperara is defined such
that TL(a) =i andHD(a) = Ni*. Each branclb = (i,j) of a support hyperarc is
also called boarding arb € BE);

e WE: waiting hyperarcs (Gentilet al.2005a), representing only tla¢tractive
lines serving the stop. Considering the same stop node as before, the associated
waiting hyperarcc is defined such thalL(c) = i andHD(c) = Lip'(& SNi*,
where L, (&) represents the set of attractive lines serving the stop intate
passengers travelling along the hyperpéilat timeé.

e AE: alighting arcs.

It should be noted that in the dynamic and congested scenario the branches of
the hyperarc (Figurel) do not only represent‘theerage delay due to the fact that the
transit service is not continuously available over tinbait also theétime spent by users
queuing at the stop and waiting that the service become actually available to them

(Meschiniet al 2007). Moreover, for modelling purposes, we assume that passengers



arriving at the stop join a unique, mixed queue regardless of their particular attractive
line set. In this case, overtaking is possible among passengers having different attractive
sets; however, any competition among passengers sharing the same attractive set is

solved by applying the FIFO rule. (Troztial2010.
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Figure X Representation of a stop in the hypergraph.

In order to represent time-dependent travel times, waiting times, etc., the

following dynamic variables are also introduced:

e kij(9): number of vehicle arrivals that passengers, arriving at stopi raadiene
&, have to wait before boarding the attractive line associated with the ling; node
e tj(8): exittime from ard = (i,j) € E for users entering it at timg
o ¢j(&: travel time of ard = (i,j) € E for users entering it at tim& Namely, if
the arc is entered at tindeand the exit time ig;j(&), thencij(&) =t;(&) - &
e @j(d: mean frequency at tim& and stopi of the public transport line

associated with line node



o 7ie(): diversion probability. This is the probability of using at tirjethe
boarding ard = (j,j), which is a brancbf hyperarce = (i, Lip);

e  Ge(9): expected waiting time at the stop nadand time{, if the considered
hyperarc ise=(i, Lip) ;

o Gie(9: partial waiting time at the stop nodeand time(, if the considered
hyperarc iee=(i, Lip) ;

o Hiie(&): expected waiting time at the stop nddand time& conditional to the
event of boarding line represented by nqgdeut of the set represented by
hyperarce=(i, Lip) ;

e tjjie(&): boarding time for users arriving at sto@t time & conditional to the
event of boarding line represented by nqgdeut of the set represented by
hyperarce=(i, Lip). Namely: tije(&) = £+ Gjje(E);

e 0p5(9): expected actual cost of the hyperpdtto destinatiors for users leaving
nodei at time¢;

e S5(9: expected travel cost of thminimal hyperpathto destinations for users

leaving node at timeé.

3.2 Problem definition

In the original formulation ohortest hyperpathdNguyen and Pallottino 1988, Spiess
and Florian 1989), it is acknowledged that at any intermediate stop, passengers
travelling towards a specific destination would only consider the subsstratctive

lines which are used in order to minimize the total expected travel time to destination,
and would board whichever attractive line comes first. Consequently, each elemental
itinerary is a particular realisation of the optimal strategy or, from a graphical point of

view, a single path of the shortest hyperpath.



Definition
A subgraphH, = (Np, Ep, (&), whereNp < N, Epc E andzp(&) = (mje(£)) a real
value vector of dimensiorgf X 1) is a dynamic hyperpath connecting origire CNp

and destinatios € CN,, if:

e Hpis acyclic with at least one arc;

e noder has no predecessors and neti@s no successors;

o for every node € Np\{r, s} there is a hyperpath fromto s traversing. Each
node has at most one immediate successor hyperake RN, then its
successor has cardinality equal to one, otherwise the successor hyperarc has
cardinality equal or greater than one.;

e the elements of theharacteristic vectorp(&) satisfy the conditions:

> 7.(£)=1, VieRN,
jelp (9) 1)

ﬂ-ije(éj) >0

and the value of its components depends on theditney are evaluated,;
e travel timescj(&) associated to arcs,jj € Ep and waitinig times@e(d)
associated to nodese RN, depend on the entering tindgethey are evaluated

waiting timesée(&) also depend on the considered hypeeadj, Lip(&)) € Ep.

In the static context, it is shown that the total travel time of the generic
hyperpathH, can be computed by explicitly taking into account all the elemental faths
forming it (Nguyen and Pallottino 1988, 1989). Therefor,iis the set of such paths,

A¢ is the probability of choosing the elemental pgtandy. is its travel time, the travel

time of hyperpath, is:



= Z/lf Ve (2)
1eQp
On the other handgy can be expressed as the sum of travel and waiting times on
the path’s arcs and nodes:
ZC.J Sjo+ 20,5 ®)
j eE ieNR,
wheredjc = 1 if arch = (i,j) belongs to patld, otherwisedgj, = 0, anddic = 1 if
path ¢ traverses node, otherwisedi; = 0. Thus the following expression of the

hyperpath’s total travel time can be obtained:

P Zﬂ‘f ZCIJ Oy + 20 r (4)
(eQ, i)k, ieRN,,

In a network with overcrowding, as considered here, travel times depend on the
time the arc is entered. Consequently, it can happen that the same node is traversed by
different paths at different times and the travel cost associated with it has different
values. Hence, the above definition of the hyperpath’s total travel time does not apply to
the dynamic scenario. Nevertheless, by extending the local recursive formula (the so-
calledgeneralised Bellman equatipgiven in Nguyen and Pallottino (1988, 1989) to
the dynamic context, a sequential definition of the dynamic hyperpath’s travel time
structure is obtained. What is more, the equation enables obtaining the result whilst
avoiding path enumeration, thus decreasing the computational burden.

Definition
The total travel time of the dynamic hyperpéthconnecting to s at time¢is

sequentially defined in reverse topological order as:



0, ifi=s
g5(&)=1c, &)+ a’(t, (&) if i ¢ RN, )
9ie(§)+ gED(e)S(tiHD(e) (5))' if i e RNp

0, ifi=s
95(£)=1c, (&) + a2, () figRN, o
O(&)+ Z(?)ri,-e(ef)-[gg,s(ti“e(f))], if i e RN,

where:

e He(9 is the total expected waiting (and queuing) time at sagsociated with
hyperarce = (i, Lip) ;

e 0,"PO(tinpe( 9) is the remaining cost of the hyperpath, upon boarding one of
the attractive line(s) from stop node

e Lj is the particular set of competing lines, that passengers might consider

boarding at stopwhen travelling along hyperpak.

3.3  Stop model

3.3.1 Probability distribution functions of the wag times

It should be noted that the above formulation of the hyperpath travel time structure and
computation is independent of specific values given to the diversion probahiji{iés

and expected waiting cost&(&). These variables are specified by the stop model and
depend on the particular assumptions adopted for modelling the passenger and the

public transport vehicle arrivals at the stop node, and on the passenger boarding

mechanism.



In our model, the basic hypotheses about carrier and passenger arrivals (Nguyen
and Pallottino 1988, Spiess and Florian 1989) are not changed, but passengers waiting
at a stop may be prevented from boarding an approaching carrier because of
overcrowding. If the stop layout is such that passengers have to join a FIFO queue, then
the user coming at stogt time& has to wait for th&;(&)™ carrier of lingj.

As proved by Larson and Odoni (1981, p. 54), the waiting time befoig t§&

carrier arrival occurs is Erlang-distributed with parameitgid and 1(%),

@; () 'eXp<(Pij (&) - w). wls ©-1
f; (W, &) = |_ki]_ &) _1J

0, otherwise¢

JfF w>0

(6)

wherew is the stochastic variable representing the waiting time.
As such, considering hyperaec= (i, Lip(¢é)), the diversion probability can be

expressed by the following formula:

~+00

7 ()= [ f;(w&) [TF, (w.&)dw @)
0 zeLip\{j}

where F j(w,d) is the survival function of the Erlang-distributed waiting time for the

branchb=(i, 2) of hyperare = (i, Lip).
On the other hand, the total expected waiting time for the consideredastdp

hyperarce is equal to:

0.(&) = IHEU (w,&) dw ®)

0 jELip



Recalling the definition of conditional expected value (Loeve 1978, Melotto

2004), it is also possible to write:

Qie (5) = Zﬁije (g) ) 9i|je (g) = Zeije (g)
0i|je (é:) =

0,()= [w-1, (&)

jELip

1 +00

ﬂ-ije (g) 0

ij (W’ 5) H IEiz (W1 5) dW

] S

ZEI-ip \{J }

zely, \{j}

[ [F.(w.&)dw

9)

(10)

(11)

To further stress the implication of the proposed stop model, consider the small example

network of Section 2 and the four scenarios summarised in Table IV.

TablelV: Average headwayg,values and travel time upon boarding for the two lines
in the considered scenarios.

Line 1 Line 1 Line 1 Line 2 Line 2 Line 2
Average K Travel time | Average K Travel time
frequency upon boardingd frequency upon boarding
[min? [min] [min™ [min]
S1|1/6 1 10 1/6 1 10
S2|1/3 2 10 1/6 1 10
S3|1/2 3 10 1/6 1 10
S4|1 6 10 1/6 1 10

Table V Boarding probabilities, conditional expected waiting times and total expected
waiting time at the stop for the considered scenarios.

7ie()

Bhije($) [min]

Gie(£) [min]

S1

Line 1

0.50

3.00

3.00




Line 2 0.50 3.00 3.00

Line 1 0.45 3.99 3.33
S2

Line 2 0.55 2.81 3.33

Line 1 0.42 4.50 3.47
S3

Line 2 0.58 2.72 3.47

Line 1 0.40 5.13 3.62
S4

Line 2 0.60 2.62 3.62

Scenario 2 is the same considered in Section 2. As displayed in Table V, the
probability to board Line 1 is not only lower than the value calculated with the
uncongested model (Table Il), but also lower than the value calculated with the
effective frequency model (Table IIlI). On the other hand, the opposite holds for the total
expected waiting time.

This phenomenon may be explained with the properties of the Erlang and
exponential distributions. In fact, kf= 2 andg = 1/3min for Line 1, this service would
be boarded only in case both vehicles of Line 1 pass with an headway shorter than the
average value of three minutes. However, this event is less probable than one vehicle of
Line 2 arriving before its average inter-arrival time (six minutes). Moreover, if the mean
of the Erlang distributioms constant (in our cask,p = 6) andk — o, the waiting time

before boarding tends to be deterministic, thg&) for Line 1 increases and tends to

klinellﬂinel-

On the other hand, the boarding probability for Line 2 tends to equation (12),

I(Iin el
Pine1

ﬂlinez(é) = j flineZ(W’g) dw (12)

0



where, kinet/ @ iinet = 1/p iine2 IS also the expected value fafe2(w, &). Because the
expected value of an exponential distribution is always lower than its median, the
boarding probability of Line 2 progressively increases Withe1 (for constank jine2 =

1), whiler jine1 decreases.

3.3.2 Attractive Set

In general, the above expressions of the diversion probabilities and expected waiting
times can be applied to any subseNgf however, only a specific subdetp(&) < Ni*
is associated with the minimum travel time to destination at &infénis set is defined

attractiveand includes all the lines nodes that make up the head of the waiting hyperarc

associated to the stop node considered.

Recalling the definition of amttractive set given in (Nguyen and Pallottino

1988), we can write:

AL, (E) N/
Zeije(é:)"_ Z”ije(é)'[g,jas(ti|je(§))]: (13)

jelp (£) jelp (&)

mm{Z ORIV (é)-[Séf(t”e(f))]}
Consequently, in order to determing,(&), it is in general necessary to compute

gS,(&) for all the possible subsets biff. However, at least for the uncongested static

case, it is counter-intuitive to exclude a line frany(&) if it has a shorter remaining

travel time than any other attractive one. Therefore, it is possible to solve the

combinatorial problem described above through a greedy approach (Spiess and Florian

1989, Nguyen and Pallottino 1988, Chriqui and Robillard 1975). Namely, the lines are

processed in ascending order of their travel time upon boarding and the progressive



calculation of the values ofje, 8. andg', is stopped as soon as the addition of the next
line increases the value gf,. At this point, the cost is minima$f) and the set of lines
corresponds to the attractive set.

The correctness of the greedy method, in the static case, depends on the shape of
the waiting time pdf (exponential). By contrast, in the dynamic scenario the only exact
method of findingL"i,(&) requires the enumeration of all the possible combination of
lines serving the considered stop. Greedy-type heuristics could be applied also in the
time-dependent case to overcome the computational complexity arising from the exact

solution of the problem, however this is out of the scope of the present work.

4. Numerical Example

The Decreasing Order of Time (DOT) method, presented by Chabini (1998), which has
been analytically proved to be the most efficient solution method for the-atle
search for every possible arrival time, was extended to the time-dependent shortest
hyperpath problem in order to devise a solution algorithm for the example considered in
this section.

Although the proposed model has a continuous time representation, a discrete-
time representation for its numerical solution has been adopted. The main idea is to
divide the analysis periodhP = [0, ®] into T time intervals, such thaAP =
{&.&8,...&, .., &1 with & =0 and&™! = O, and to replicate the network along the
time dimension, forming a time-expanded hypergrBi@y containingvertexesin the
form (i, &), andedgesin the form ({, &), (, tij(%)).

If time intervals are short enough to ensure that the exit time of a generic edge
ti (&9 is not earlier than the next internvé@i*/, for < T-2, it is ensured that the network

is cycle-free and theertex chronological ordering is equivalent to the topological one.



Thus,HGt is scanned starting from the last temporal layer to the value assuniged for
& and, within the generic layer, no topological order is respected. When a generic
vertex (i, &) is visited, its forward star is scanned in order to set the minimal travel cost
to destination and the successive edge by means of equation (13) (refer to the appendix
for a detailed formulation of the algorithm).

Such algorithm has been applied to the network used by Spiess and Florian
(1989) in their seminal work (Figure 2) in order to find optimal travel strategies and

calculate travel times from each node to destination (node 16).
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Figure 3 Optimal strategy found for the static case, expected total travel time from each
intermediate node to the destination and diversion probabilities at the stop nodes.



The results obtained in the static and uncongested scenario, with reference to
destination node 16, are summarised in Figure 3: for each stop the waiting hyperarc is
depicted S indicates the total expected travel time from nottedestination and'! is

the probability to traverse the boarding arc (i, j).

TableVI: Time dependent travel variables for each line arc of the example network: in-
vehicle travel time, average frequency and number of passages to be waited before
boarding (k).

Time of Travel variable | Arc3 | Arc4 | Arc9 | Arc 10 | Arc 16 | Arc 17
the day (4,23)| (5,6) | (7,9 | (8,20) | (11,14)| (12,15)
8:00-08:30| Travel time [min]| 30 7 6 4 4 15
8:00-08:30| Freq. [min'] 1/3 1/6 1/6 1/15 1/15 1/3
8:00-08:30] k 2 1 1 1 2 1
8:30-09:00| Travel time [min]| 35 7 6 4 4 15
8:30-09:00| Freq.[min?] 1/3 1/6 1/6 1/15 1/10 1/3
8:30-09:00] k 3 1 1 1 2 2
9:00-09:30| Travel time [min]| 35 7 6 4 4 10
9:00-09:30| Freq. [min'] 1/3 1/6 1/6 1/15 1/5 1/3
9:00-09:30] k 2 1 1 1 2 1

In order to compare static conditions with results obtained when hypothesising
time-dependence of passenger congestion and travel variables within the day, the
morning peak [08:00-9:30] is divided into one-minute intervals. Changes in travel
conditions are assumed to occur only at 08:00, 08:30, and 09:00, as shown in Table VI,
while outside the analysis period travel variables are assumed to remain constant and
have the same values as in the uncongested scenario.

Results, summarised in Figures 4-5-6, show that the change in travel variables
does not only affect the expected travel time to the destination and the boarding
probability, but also the alternatives included in the optimal strategy. Notably, between
08:00 and 08:30, because of congestion at stop 3, passengers waiting at stop 2 do not
include Line 001 in their attractive set. Instead, they prefer boarding Line 003 so as to

avoid a transfer at stop 3 and the associated long waiting time. Also, between 08:30 and



09:00, because of the increased travel time upon boarding and heavy (k = 3) congestion,
Line 002 is excluded from the attractive set at stop 1 and is not even re-included after
09:00, when congestion slightly decreases (k = 2). Finally, between 09:00 and 09:30,
the total expected waiting time at stop 3 remarkably decreases, because Line 004
becomes more frequent and congestion on Line 003 has dissipated. Consequently,
passengers waiting at stop 2 now choose to make a transfer at stop 3 and both lines (001
and 003) are included in the attractive set.
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Figure 4 Optimal strategy found between 08:00 and 08:30, expected total travel time
from each intermediate node to the destination and diversion probabilities at the stop
nodes.
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Figure 5 Optimal strategy found between 08:30 and 09:00, expected total travel time
from each intermediate node to the destination and diversion probabilities at the stop
nodes.
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Figure 6: Optimal strategy found between 09:00 and 09:30, expected total travel time
from each intermediate node to the destination and diversion probabilities at the stop
nodes.

5. Conclusions

Given the importance of travel time variability in the traveller route and mode
decisions, this paper presents a dynamic route choice model for public transport
networks, in which travel variables, such as on-board travel times and frequencies, vary
with time, and in which queues may form at public transport stops due to overcrowding,
hindering passengers to board the first available line of their choice.
The model reproduces route choice of commuting passengers that know by previous
experience the number of passages they must let go, at each stop, before being able to
board every line of theaittractive setln case of constant variables, the results from the
static algorithm by Spiess and Florian (1989) are reproduced. However changes in the
shortest hyperpath are clearly shown when travel variables become dynamic and/or
gueuing at stops is considered.

In the example given, the combinatorial problem of selecting, at each stop, the

set of attractive lines, is solved by means of an exact procedure. However, when



applying the modein large-scale scenarios, using real network and traffic variables
data, heuristics are needed to speed up the computation.

Although the expected travel time is an important factor affecting the travellers
route choice, as proved by the numerical example, many studies have found that the
reliability of travel time due to non-recurrent congestion can be even more important.
Indeed a “wrong” choice of route or mode can result in a significant delay, which may
have severe consequences for the traveller (e.g. late arrival at the workplace). Equally,
some groups of travellers may be particularly adverse to discomfort on board due to
overcrowding (e.g. elderly travellers, parents travelling with your childrenand
decide to change their route and/or departure time according to network conditions. As
such, future developments will concentrate in the inclusion of these factors in a multi-
class route choice model coupled with departure time choice model in public transport
networks.

Also, within the same context, the method weéltbsted in large-scale scenarios,
using real network and traffic variables data, and its potential of application to real-time

journey planning will be investigated.

6. Appendix: the solution algorithm

The variable list of the algorithm is:

o T temporal layer index
e nt: temporal layer length in minutes
o s destination node

o i generic node

FSi): set of (hyper)arcs belonging to the forward star of node



o a generic hyperarc, wheeee FS(i)
e b branch {;j) of the generic hyperaece FJi), wherei € RN
e (i,&: waiting hyperarc from stop nodet time intervak”.
HD(c(i,£9) = Lip (&)
e sudi, &):successor arc of the generic node time intervals?, wherei ¢ RN
e h: generic arc, where € FSi) andi ¢ RN
e gS(&): current travel cost from generic nod® destinatiors at time interval”

e S5(&9): minimum travel cost from generic not® destinatiors at time interval

51'
e SSui  minimum travel cost from generic not® destinatiors at time interval
512 §T—1

e ¢(,a,&): travel cost froni to s if passengers travel along bransH(i,j) of

hyperarca at time intervat”

The solution algorithm for the time-dependenttalbne shortest hyperpath
problem for every possible arrival time is detailed here.
Step 0 (Static pre-processindnitialisation): V i € N\ {s}
CalculateSS( £7!) = SStat
V 7 e[0,T-2]

SetS{(¢£) = 0,suds, &) =J

Vi eN\{s}
Set $(&) = o
Step 1 Hyperarcs’ dynamic attributes): V 7€[0,T-2]

Y i eRN



V a e FSi)
Vb=(Gj)<Sa
Calculaterja (&%) with eq. (7)
Calculateda(¢?) with eq. (11)

Ba(&) =6a($) + Gia(E)
Step 2 (Calculate hyperpath travel time V' 7 €[0,T-2]

Vi eN\{s}
Ifi eRN Y a eFS()
Vb=(j)Ca
If [Ga(&7) / dnt] > 1

tija($7) = [Gija(S7) / dnt] +
é‘l‘

Else
tija(7) = &+ 1.

If tija(£7) < &7 and
¢ (tija(S7)) <o

g°(.a,&) = d(tia(&7))
Else
gis(j a,&") = SSstat

g°(&) =d'(&) +

9°(.a,57)-7ia(57)
If S5(£9) > gp'S(&7) then
S%&) = g™(¢&7) Andc(i,&) =a
Else ifi ¢ RN,V h e FS(i)

If [ci(&) [ 7nt] > 1



ti(¢" ) =[ci(& ) / dnt] + &
Else
i(&r)=&+1
End if
g°(&") =ci(&7 ) + g )
If S°(&7) > g%(¢7)
S%(¢7) =g°(¢7) and

sudi, &) =h
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