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While spiral wave breakup has been implicated in the emergence of atrial fibrillation, its role in maintaining
this complex type of cardiac arrhythmia is less clear. We used the Karma model of cardiac excitation to
investigate the dynamical mechanisms that sustain atrial fibrillation once it has been established. The results
of our numerical study show that spatiotemporally chaotic dynamics in this regime can be described as
a dynamical equilibrium between topologically distinct types of transitions that increase or decrease the
number of wavelets, in general agreement with the multiple wavelets hypothesis. Surprisingly, we found that
the process of continuous excitation waves breaking up into discontinuous pieces plays no role whatsoever
in maintaining spatiotemporal complexity. Instead this complexity is maintained as a dynamical balance
between wave coalescence – a unique, previously unidentified, topological process that increases the number
of wavelets – and wave collapse – a different topological process that decreases their number.
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Atrial fibrillation is a type of cardiac arrhythmia
featuring multiple wavelets that continually in-
teract with each other, appear, and disappear.
The genesis of this spatiotemporally chaotic state
has been linked to the alternans instability that
leads to conduction block and wave breakup, gen-
erating an increasing number of wavelets. Less
clear are the dynamical mechanisms that sustain
this state and, in particular, maintain the bal-
ance between the creation and destruction of spi-
ral wavelets. Even the relation between wave
breakup and conduction block, which is well-
understood qualitatively, at present lacks proper
quantitative description. This paper introduces
a topological description of spiral wave chaos in
terms of the dynamics of wavefronts, wavebacks,
and point defects – phase singularities – that an-
chor the wavelets. This description both allows
a dramatic simplification of the spatiotemporally
chaotic dynamics and enables quantitative predic-
tion of the key properties of excitation patterns.

I. INTRODUCTION

Atrial fibrillation (AF) is the most common sustained
cardiac arrhythmia1. While not itself lethal, it has a
number of serious side effects, such as increased risk
of stroke and systemic thromboembolism2. The origin
of AF has been debated through much of the previous
century3. In 1913, Mines proposed that fibrillation is
caused by a reentrant process4, which leads to a high-
frequency wave propagating away from the reentry site
and breaking up into smaller fragments. This mecha-
nism is presently referred to as anatomical reentry and
requires a structural heterogeneity of the cardiac tissue,

such as a blood vessel (e.g., vena cava). Reentry could
also be functional5, where the heterogeneity (i.e., tissue
refractoriness) is dynamical in nature. Neither picture,
however, explains the complexity and irregularity of the
resulting dynamics.

The first qualitative explanation of this complexity
came in the form of the multiple wavelet hypothesis pro-
posed by Moe6. In this hypothesis multiple independent
wavelets circulate around functionally refractory tissue,
with some wavelets running into regions of reduced ex-
citability and disappearing and others breaking up into
several daughter wavelets, leading to a dynamical equi-
librium. This picture was subsequently evaluated and re-
fined based on numerical simulations7 and experiments8.

Krinsky9 and then Winfree10 suggested that the dy-
namical mechanism of fibrillation relies on the forma-
tion and interaction of spiral waves. Spiral waves rotate
around phase singularities that may or may not move,
producing reentry that requires neither structural nor
dynamical heterogeneity in refractoriness. The presence
and crucial role of spiral waves in AF was later con-
firmed in optical phase mapping experiments11–13. Ex-
perimental evidence shows that spiral waves tend to be
very unstable: only a small fraction of these complete a
full rotation14–16 with the dynamics dominated by what
appears to be wavebreaks or wave breakups (WBs).

Although there is plentiful experimental and
computational17 evidence that WBs play a crucial
role in the transition to fibrillation, it is far less obvious
that this mechanism is essential for maintaining AF. As
Liu et al.16 write, “for a wave to break, its wavelength
must become zero at a discrete point somewhere along
the wave. This can happen if the wave encounters
refractoriness that creates local block (wavelength = 0),
while propagating elsewhere. Therefore, WBs can be
detected at locations where activating wavefronts meet
the repolarization wavebacks.” The data produced by
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experimental studies is highly unreliable in this regard,
since detecting the position of wavefronts and wavebacks
based on optical recordings is far from straightforward.
Numerical simulations, on the other hand, have focused
mostly on the transition, rather than sustained AF.
Theoretical studies of model systems such as the complex
Ginzburg-Landau equation18 and FitzHugh-Nagumo
equation19 lack dynamical features, such as the alternans
instability20, that are believed to play an essential role
in conduction block that leads to WBs and AF21.

Even if WBs do play a role in maintaining AF, they
tell only a part of the story. Indeed, in sustained AF,
despite some variation, the quantitative metrics such as
the number of wavelets or phase singularities, have to re-
main in dynamical equilibrium. While WBs may explain
the increase in the number of wavelets and phase singu-
larities, it cannot explain how these numbers might ever
decrease. The multiple wavelet hypothesis6 comes the
closest to providing all the necessary ingredients for such
a dynamical equilibrium, but it lacks sufficient detail to
be either validated or refuted.

The main objective of this paper is to construct a
mathematically rigorous topological description of the
dynamics and to use this description to characterize and
classify different dynamical events that change the topo-
logical structure of the pattern of excitation waves in a
state of sustained atrial fibrillation. We will focus on the
smoothed version22 of the Karma model23,24,

∂tu = D∇2u + f(u), (1)

where u(t,x) = [u1, u2](t,x),

f1 = (u∗ − uM2 ){1− tanh(u1 − 3)}u2
1/2− u1, (2)

f2 = ε {βΘs(u1 − 1) + Θs(u2 − 1)(u2 − 1)− u2} ,

where Θs(u) = [1 + tanh(su)]/2, u1 is the (fast) voltage
variable, and u2 is the (slow) gating variable. The param-
eter ε describes the ratio of the corresponding time scales,
s is the smoothing parameter, and the diagonal matrix D
of diffusion coefficients describes spatial coupling between
neighboring cardiac cells (cardiomyocytes). The parame-
ters of the model25 are M = 4, ε = 0.01, s = 1.2571, β =
1.389, u∗1 = 1.5415, D11 = 4.0062, and D22 = 0.20031.
This is the simplest model of cardiac tissue that develops
sustained spiral wave chaos from an isolated spiral wave
through the amplification of the alternans instability re-
sulting in conduction block and wave breaks, mirroring
the transition from tachycardia to fibrillation.

The outline of the paper is as follows: Section II in-
troduces the topological description of the complicated
multi-spiral states. Section III discusses the relation-
ship between tissue refractoriness and conduction block.
The dynamical mechanisms that maintain spiral wave
chaos are presented in Section IV. Section V discusses
the statistical measures quantifying sustained dynamics,
and Section VI contains the discussion of our results and
conclusions.
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FIG. 1. Phase diagram for a generic two-variable model in
the ε → 0, D → 0 limit. (a) The nullclines f1(u) = 0 (blue),
f2(u) = 0 (red) and the limit cycle oscillation (solid green).
The labels WF and WB denote the wavefront and waveback,
respectively. The dashed green line corresponds to the “stall”
value ū2 which defines a stationary front. The excited region
E is shaded, and the gray arrows show the local direction
of the vector field f(u). (b) The wavefront (solid green line)
and waveback (dashed green line), the level sets u̇1 = 0 (solid
blue line) and u̇2 = 0 (dashed blue line), spiral wave tip (green
circle) and phase singularity (blue circle). The arrows denote
the direction of the normal velocity c.

II. WAVE ANATOMY

To quantitatively describe the topological changes such
as wave breakup and creation/destruction of spiral cores
we must first discuss the anatomy of excitation waves and
define the appropriate terminology.

A. Wavefront and waveback

The region of excitation can be thought of as be-
ing bounded by the wavefront, which describes fast de-
polarization of cardiac cells, and waveback, which de-
scribes a typically slower repolarization. The most con-
ventional definition of the wavefront and waveback that
has been used in both experiment15,26 and numerical
simulations17,27 is based on a level-set of the voltage vari-
able, u1(t,x) = ū1. If we define the region of repolariza-
tion

R = {x|∂tu1(t,x)) < 0}, (3)

then the wavefront/back is the part of the level set out-
side/inside R.

The choice of the voltage threshold ū1 is arbitrary and
is typically taken as a percentage of the difference be-
tween the voltage maximum and its value in the rest
state17. This very simple definition allows easy identi-
fication of the action potential duration (APD) and di-
astolic interval (DI), where the percentage is often used
as a subscript which refers to the choice of the threshold
(e.g., APD80 corresponds to 80% of the difference).
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Analytical studies tend to use a different definition28–30

for the wavefront and waveback which is based on
scale separation between the dynamics of fast variables,
such as voltage, and slow variables, such as potassium
concentration (the voltage u1 and the gating variable
u2, respectively, in the Karma model). For the sim-
plest two-variable models (Karma, Barkley31, FitzHugh-
Nagumo32, Rinzel-Keller33, etc.), in the limit ε→ 0, the
excitation waves are related to a limit cycle oscillation
in the (u1, u2) plane governed by the system of coupled
ordinary differential equations30

u̇1 = f1(u),

u̇2 = f2(u). (4)

The wavefront and waveback correspond to the segments
of the limit cycle solution of (4) connecting the two sta-
ble branches of the u1-nullcline f1(u) = 0 for which
du2/du1 < 0 (they are denoted with superscripts − and
+, as illustrated in Fig. 1(a)).

In the limit ε → 0 these segments become horizontal
lines and describe very fast (in time) variation of the
voltage variable. In space, both the wavefront and the
waveback have widths that scale as

√
ε. In the limit ε→

0 they become very sharp (green curves in Fig. 1(b))
and can be thought of as the boundaries of the region of
excited tissue

E = {x|f+
1 (u(t,x)) = O(ε)}, (5)

shown as the green shaded area in Fig. 1(b). These
boundaries can be defined with equal precision using any
curve in the (u1, u2) plane that bisects both the wavefront
and the waveback segments of the limit cycle. If we define
this curve as the zero level set of an indicator function

g(u) = 0, (6)

the wavefront and the waveback in the physical space at
a particular time t are given by

∂E = {x|g(u(t,x)) = 0}. (7)

In particular, a level set of the voltage variable discussed
previously corresponds to a vertical line in Fig. 1(a),
g(u) = u1 − ū1.

A less arbitrary and dynamically better justified choice
g(u) = f0

1 (u) corresponds to the unstable branch of the
u1-nullcline (for which du2/du1 > 0). In order to gener-
alize this choice to finite values of ε, the unstable branch
has to be extended beyond its end points u≶ where
du2/du1 = 0, e.g.,

g(u) =

u1 − u<1 , u2 ≤ u<2 ,
f0

1 (u), u<2 < u2 < u>2 ,
u1 − u>1 , u2 ≥ u>2 .

(8)

The excited region where g(u) > 0 according to (8) is
shaded green in Fig. 1(a). Yet another alternative sug-
gested by Fig. 1(a) is to use the u2-nullcline g(u) = f2(u)
that also bisects both the wavefront and the waveback.

As time evolves, the level set (7) moves with normal
velocity

c = − b · ∂tu
b · ∂nu

, (9)

where b = ∂g/∂u, ∂n = n·∇ is the directional derivative,
and n is the outside normal to ∂E. This normal velocity
is taken to be positive for the wavefront and negative
for the waveback. In particular, for g(u) = u1 − ū1,
(9) simplifies, yielding c = −∂tu1/∂nu1, so the sign of c
corresponds to the sign of ∂tu1 for proper choices of ū1

such that ∂nu1 < 0 over the entire level set.
Whatever the choice of the bisecting curve g(u) = 0 in

the (u1, u2) plane is, it may not define a continuous curve
in the physical space at all times. Indeed, the PDE model
(1) does not take the cellular structure of the tissue into
account. Instead, a spatial discretization of (1) should be
used, so that the field u becomes a discontinuous function
of space. In this case the wavefront and waveback should
instead be defined as the boundary ∂E of the region

E = {x|g(u(t,x)) > 0}, (10)

rather than the level set (7).
There are several serious problems with the “local”

definitions discussed above, which are based on the ki-
netics of isolated cardiac cells. For one, they ignore the
coupling between neighboring cells in tissue (electrotonic
effects) and hence cannot correctly describe the essen-
tial properties of excitability and refractoriness, making
quantitative description of conduction block impossible.
Furthermore, since the value of ε is not vanishingly small
for physiologically relevant models, the widths of both
the wavefront and the waveback become finite as well,
so different choices of g(u) can produce rather distinct
results in the physical space. Additional complications
will be discussed below.

The definitions of the wavefront and waveback can be
generalized for a tissue model by noticing that the level
sets such as f0

1 (u) = 0 or f2(u) = 0, in the limit ε → 0,
coincide with the level sets ∂tu1 = 0 and ∂tu2 = 0. These
are special cases of a more general relation

g(u) = a · ∂tu = 0, (11)

where a = (cosα, sinα) and 0 < α < π is a parameter
that can be chosen to properly describe the refractoriness
and excitability of the model for finite values of ε. The
wavefront and waveback can again be distinguished as
the parts of the level set that lie outside or inside R,
respectively. We will set α = π/2 below, which yields
the following definition

∂E = {x|∂tu2(t,x) = 0}. (12)

The level set (12) is shown as the dashed blue line in
Fig. 1(b). As Fig. 2(a-b) illustrates, for the Karma
model, it gives an extremely good agreement with the
more conventional definition based on (8) for both the
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FIG. 2. Comparison of the definitions of the wavefronts (a)
and wavebacks (b) for a complicated multi-spiral state u1(t,x)
based on (7)-(8) (solid black lines) and (12) (dashed white
lines). White/black circles correspond to the phase singulari-
ties with positive/negative chirality. (c) Comparison between
spiral wave tips and phase singularities computed using def-
initions (13), (14), and (16) shown as gray, black, and white
points, respectively.

wavefront and the waveback. Variation in α by O(ε) has
a very weak effect on the position of the wavefront (which
is very sharp), but has a more pronounced effect on the
position of the waveback (which is much broader).

B. Phase singularities

Typically (although certainly not always34), the tem-
poral frequency and wavelength of spiral waves are con-
trolled by their central region, usually referred to as a
spiral core or rotor35. This region is spatially extended
and its size can be characterized using the adjoint eigen-
functions of the linearization36,37. In practice it is more
convenient to deal with a single point that describes the
location of the core region. In particular, the center of
this region is associated with a phase singularity, where
the amplitude of oscillation vanishes. The location of
the phase singularity depends on the definition of the

phase, however, and the proper definition is far from ob-
vious for strongly nonlinear oscillations characteristic of
excitable systems. The methods based on phase38,39 or
amplitude22 reconstruction rely on the dynamics being
nearly recurrent and break down for spatiotemporally
chaotic states featuring frequent topologically nontrivial
events such as the creation or annihilation of spiral cores.

A more conventional (and convenient) approach is to
use instead the spiral tip, which is a point on the bound-
ary ∂E of the excited region that separates the depo-
larization wavefront from the repolarization waveback
(green circle in Fig. 1(b)). A number of different def-
initions of the spiral tip have been introduced in the lit-
erature. The most popular are the ones based on the
level-set intersection (LSI)40

u1(t,x) = ū1, f0
1 (ū1, u2) = 0, (13)

or zero normal velocity (ZNV)41

u1(t,x) = ū1, ∂tu1(t,x) = 0, (14)

or the curvature κ of the level set u1(t,x) = ū1
42. In

particular, ZNV and LSI define the spiral tip(s) xp(t)
as intersection of two level sets which are much easier to
compute than the curvature. LSI can be thought of as the
limiting case of ZNV where D11 → 0, so the difference
between the positions of spiral tips defined using these
two methods provides a measure of the importance of
electrotonic effects.

Albeit they could be simple to define, spiral tips typ-
ically exhibit spurious dynamical effects. For instance,
they move (in circular trajectories) for spiral wave so-
lutions of (1) rigidly rotating around an origin x′ (née
relative equilibria) which satisfy

∂tu(t,x) = ω∂θu(t,x), (15)

where ∂θ = ẑ · (x− x′)×∇ and ω = 2π/T is the angular
frequency. Indeed, even if the normal velocity (9) of the
spiral tip vanishes, its tangential velocity will not vanish,
unless ū1 = u1(x′). Hence, spiral tips are not ideally
suited to be used as indicators of the wave dynamics.

The phase singularity, unlike the spiral wave tip,
should remain stationary for a rigidly rotating spiral
wave. This requires that the location xo(t) of every phase
singularity satisfies

∂tu(t,xo) = 0. (16)

Equivalently, xo(t) correspond to the intersections of the
level sets

∂R = {x|∂tu1(t,x)) = 0} (17)

and ∂E defined according to (12), i.e., phase singularities
are points on the boundary of the excited region that
separate the refractory region from the excitable region.
Note that, for ∂E defined by (11), its intersections with
∂R are independent of α, and so is the definition of the
phase singularities. This is explicit in the definition (16).
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It is easy to see that the boundaries ∂E and ∂R merely
correspond to different level sets ϕ = α ± π/2 and ϕ =
±π/2 of the phase field

ϕ = arg(∂tu1 + i∂tu2), (18)

so xo(t) indeed corresponds to a phase singularity of the
phase field (18). Since they are defined locally (just like
the spiral wave tips defined via LSI and ZNV), the phase
singularities can be easily determined for arbitrarily com-
plicated solutions. More generally, xo(t) can be inter-
preted as the instantaneous center of rotation for slowly
drifting spiral waves, i.e., for which the rotation-averaged
translation of the spiral wave core is much smaller than
the typical propagation velocity c of excitation waves.

The positions of spiral wave tips and phase singular-
ities are compared in Fig. 2(c). For the LSI and ZNV
definitions, the positions of the spiral tips are shown for
1.68 ≤ ū1 ≤ 2.11, corresponding to the voltage threshold
between APD70 and APD90, respectively17. Clearly, elec-
trotonic effects are non-negligible for the present model,
as the tip positions predicted by LSI are dramatically dif-
ferent from those defined by ZNV over a range of choices
of ū1. The tip positions defined by ZNV much more
closely match the phase singularities defined by (16), and
mostly differ in position in the direction normal to the
wavefront (along the local gradient of u1).

In conclusion of this section, we should mention that,
for a typical multi-spiral solution, u1 varies rather signif-
icantly across the spatial domain, while u2 is restricted
to a narrow range of O(ε) width around the value ū2 that
corresponds to the “stall solution” for a planar front con-
necting the two stable branches of the u1-nullcline∫ u+

1

u−
1

du1 f1(u1, ū2) = 0, (19)

where f±1 (u±1 , ū2) = 0 (cf. Fig. 1(a)). This is a char-
acteristic value that corresponds to the phase singulari-
ties, as shown by Fife43. For the parameters used here37

ū2 = 0.9724.

C. Topological description

We can associate chirality (topological charge) qj =
±1 with each of the phase singularities (enumerated by
j = 1, 2, . . . ), which determines whether the spiral wave
rotation is counter- or clockwise. Chirality can be defined
locally44 as

qj = sign(ẑ · ∇u1 ×∇u2). (20)

For spatially discretized models it is more reliable to use
a nonlocal definition of chirality. Let us define a neigh-
borhood of each phase singularity xo,j using the window
function

wj(x) = e−rj/dj , (21)

where rj = |x−xo,j | and dj = mink 6=j |xo,j −xo,k| is the
distance to the nearest distinct phase singularity. Fur-
ther, let us define the pseudo-chirality q̃j of each spiral
wave as the value for which the function

J(q̃j) =

∫
Ω

d2xwj(x) |∂tu(t,x)− q̃jω∂θu(t,x)|2 , (22)

is minimized. The functional J(q̃j) defines a local ref-
erence frame rotating with angular velocity q̃jω around
the phase singularity xo,j ; this functional is minimized
for spiral waves that are stationary in that reference
frame. For a single rigidly rotating spiral wave, chirality
is precisely ±1. Minimization of (22) for complex multi-
spiral states produces pseudo chirality values equal to
±1 within a few percent, such that we can safely define
qj = sign(q̃j). In practice, this definition proves very ro-
bust when spiral cores are sufficiently well separated, i.e.,
when dj exceeds the width of an isolated spiral core25.

Since phase singularities by definition (16) lie on the
level set ∂E, for periodic boundary conditions, wave-
fronts and wavebacks can only terminate at a spiral
core (or, more precisely, phase singularity). Conversely,
in multi-spiral states, each wavefront and waveback is
bounded by a pair of spiral cores of opposite chirality. In
modern electrophysiology literature wavelets are identi-
fied with wavefronts13. Consequently, the events when
a wavelet is created (destroyed) are associated with an
increase (decrease) in the number of spiral cores by two.
Although the total number of spiral cores is not con-
served, the total topological charge

q =
∑
j

qj = 0 (23)

is conserved45,46.
A number of topologically distinct processes which re-

spect (23) are possible. Although some of these corre-
spond to the time-reversed version of the others, the dy-
namics of the dissipative systems are not time-reversible
and do not have to respect the symmetry between these
processes. In fact, as we will see below, in excitable sys-
tems such as the Karma model the dominant topologi-
cal processes increasing/decreasing the number of spiral
cores are not related by time-reversal symmetry.

III. CONDUCTION BLOCK AND TISSUE
REFRACTORINESS

As we mentioned previously, conduction block plays a
major role in wave breakup, which is essential for transi-
tion to fibrillation and spiral wave chaos in general. The
origin of conduction block can be structural, i.e., related
to tissue heterogeneity47, but it can also be dynamical,
i.e., occur in homogeneous tissue as a result of an insta-
bility. For instance, conduction block can occur when a
receding waveback is moving slower than the subsequent
advancing wavefront48. In fact, there is a variety of other
dynamical mechanisms leading to conduction block17.
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Conduction block refers to the failure of an excitation
front to propagate because the tissue ahead of it is re-
fractory and cannot be excited. Refractoriness is tradi-
tionally49 defined on the level of individual cardiac cells
by quantifying whether a voltage perturbation applied
to the quiescent state of the cell will trigger an action
potential. These definitions are not particularly useful
for understanding conduction block in tissue for two rea-
sons50–52: First of all, in tissue the excitation wave is
triggered by coupling between neighboring cells, rather
than a voltage perturbation to an isolated cell. Second,
in tissue, especially during AF or tachycardia, which are
both characterized by very short DIs, the cells never have
sufficient time to return to the rest state.

A. Low-curvature wavefront

In the Karma model, conduction block can arise as a
result of discordant alternans instability53,54 which leads
to variation in the width and duration of action poten-
tials. For excitation waves with low curvature, we can
determine the boundary of the refractory region by con-
sidering a one-dimensional periodic pulse train. In the
reference frame moving with velocity c of the wavefront,
the voltage variable satisfies the evolution equation

D11u
′′
1 + cu′1 + f1(u) = 0, (24)

provided the pulse train does not change shape, where
u′1 = ∂ξu1(ξ), u′′1 = ∂2

ξu1(ξ), and ξ = x − ct. For suf-
ficiently small DI, the conduction velocity c decreases
monotonically with DI and vanishes identically at finite
DI24. This means that there are no propagating solu-
tions below this value of DI. At the critical value of
DI, we have c = 0, so the wavefront fails to propagate
when D11u

′′
1 + f1(u) = 0. For plane waves in two dimen-

sions, u′′1 = ∇2u1, so combining this with the evolution
equation (1) we find that the boundary of the refractory
region is given by

∂tu1 = D11∇2u1 + f1(u) = 0 (25)

and coincides with the boundary (17) of the repolariza-
tion region. Similarly, the refractory region can be iden-
tified with the region of repolarization (3). This makes
intuitive sense: whatever the conditions are, the voltage
increases outside the refractory region.

Although derived for a very special case of one-
dimensional periodic pulse trains, this definition of the
refractory region works well even for states that are not
time-periodic and feature excitation waves with signifi-
cant curvature. This is illustrated in Fig. 3 which shows
the time trace of of the variables u1(t,x0) and u2(t,x0)
for a spatiotemporally chaotic solution similar to that
shown in Fig. 2. The point x0 was chosen near the spa-
tial location where conduction block occurs (such as the
center of the marked region in Fig. 7 below). The ex-
cited and refractory intervals (temporal analogues of the
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FIG. 3. Time trace of variables u1 (blue curve) and u2 (red
curve) at a fixed spatial location in a two-dimensional domain
near which a conduction block occurs at t ≈ 33. Both u1

and u2 were rescaled so that their range corresponds to [0, 1].
Excited intervals are shaded red and refractory intervals are
shaded blue. The first refractory interval ends at t ≈ 26.5,
just before the next excited interval begins at t ≈ 29.5, leading
to a short, small-amplitude action potential.

excitable and refractory regions) are shown as red- and
blue-shaded rectangles in Fig. 3; they are bounded by
the level sets ∂R and ∂E in Fig. 7.

As expected, we find that, when the wavefronts are
well separated from the trailing edges of the refractory
intervals (e.g., at t ≈ 140), long, large-amplitude action
potentials are found. This is in sharp contrast with the
short and low-amplitude action potential that is initiated
at t ≈ 29.5, soon after the previous refractory interval
ends at t ≈ 26.5. As the location of conduction block
is approached (not shown), the separation between the
trailing edge of the refractory interval and the subsequent
excitation wavefront vanishes along with the action po-
tential itself. This suggests that conduction block occurs
when and where the level sets ∂R and ∂E first touch, in
agreement with Winfree’s critical point hypothesis55.

B. High-curvature wavefront

There are, however, other dynamical mechanisms that
can lead to conduction block. Consider, for instance, the
opposite situation when the curvature of the wavefront
is high. For curved wavefronts the propagation speed c
decreases as the curvature κ of the wavefront increases,
so there is a critical value of the curvature at which the
wave fails to propagate56. It can be estimated in the limit
D22 → 0 using the eikonal approximation57 which gives

c = c0 −D11κ, (26)

where c0 is the velocity of a planar wavefront. Using
the value of c0 = λ/T ≈ 1.44 which corresponds to a
large rigidly rotating spiral wave58, we find κ−1 = rc ≈
2.8, where rc is the critical radius of curvature of the
wavefront.

A more accurate estimate for rc can be obtained using
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FIG. 4. The stationary solution u1(r) of (27).

the condition (25) for conduction block

D11[∂2
ru1 + r−1∂ru1 + r−2∂2

θu1] + f1(u) = 0 (27)

and the definition of the wavefront (12) rewritten via (1)

D22[∂2
ru2 + r−1∂ru2 + r−2∂2

θu2] + f2(u) = 0 (28)

in polar coordinates (r, θ). For small ε, u2 varies slowly in
both time and space and can be considered a constant,
u2 = ū2 given by (19). The first three terms of (28)
can therefore be ignored, so (28) reduces to f2(u) = 0.
The third term D11r

−2∂2
θu1 in (27) can also be neglected,

since u1 varies much faster in the direction normal to the
wavefront r = rc than in the tangential direction. Since
u2 is constant, subject to boundary conditions ∂ru1 = 0
at r = 0 and r = ∞, (27) has rotationally symmetric
solutions u1 = u1(r) with a stationary wavefront at the
critical radius rc given by

f2(u1(rc), ū2) = 0. (29)

The stationary solution of (27) and (29) is shown in
Fig. 4. It corresponds to the critical radius of curvature
rc ≈ 6, which is a factor of two larger than the value ob-
tained using the eikonal approximation (26). This solu-
tion is a two-dimensional analogue of the one-dimensional
“critical nucleus” for excitation52. Wavefronts with ra-
dius of curvature larger than rc propagate forward, while
the wavefronts with radius of curvature smaller than rc
retract (i.e., become wavebacks).

Before we discuss the numerical results, let us empha-
size that, with the proper choice of variables, the defini-
tions of the wavefronts and wavebacks (12), leading and
trailing edges of the refractory region (17), and phase
singularities (16) are model-independent and can be used
to analyze both numerical and experimental data, pro-
vided that measurements of two independent variables
(e.g., voltage and calcium) are available. Generalization
of the topological description presented above to higher-
dimensional models is discussed in the Appendix.

IV. NUMERICAL RESULTS

As mentioned in the introduction, during AF most spi-
ral waves do not complete a full rotation. Spiral wave
chaos in the Karma model produces qualitatively simi-
lar dynamics: topological changes involving a change in
the number of spiral wave cores occur on the same time
scale as the rotation. (For parameters considered in this
study rotation period is T ≈ 51, which corresponds to
127 ms in dimensional units58.) The larger the spatial
domain, the more frequent are the topological changes in
the structure of the solution. However, as we discussed
in Sect. II C, each topological event is essentially local
and involves either birth or annihilation of a pair of spiral
cores of opposite chirality.

Of the different types of topological events, spiral wave
breakup – associated with a creation of a new pair of spi-
ral cores – received a lion’s share of the attention due
to its role in the initiation of fibrillation. However, the
number of spiral cores cannot increase forever; eventu-
ally a dynamic equilibrium is reached when the number
of cores fluctuates about some average, with core cre-
ation balanced by core annihilation. To the best of our
knowledge, the process(es) responsible for core annihi-
lation, however, have never been studied systematically.
To investigate which of the topological events dominate
and what the dynamical mechanisms underlying these
events are, we performed a numerical study of the Karma
model (1)-(2) on a square domain of side-length L = 192
(5.03 cm), which is close to the minimal size required to
support spiral wave chaos. Spatial derivatives were eval-
uated using a second-order finite-difference stencil and
a fourth-order Runge-Kutta method was used for time
integration58. To avoid spurious topological transitions
involving a boundary, periodic boundary conditions were
used, unless noted otherwise.

Before identifying topological transitions in the nu-
merical simulations, it is worth enumerating the topo-
logically distinct local configurations. In the following
it will be convenient to use the following shorthand no-
tations: ∂E+ (wavefront, ∂tu1 > 0), ∂E− (waveback,
∂tu1 < 0), ∂R+ (leading edge of the refractory region,
∂tu2 > 0), and ∂R− (trailing edge of the refractory re-
gion, ∂tu2 < 0). For a wave train in the region with
no spiral cores, the boundaries of the refractory and
excitable regions will follow the periodic sequence (. . . ,
∂R−, ∂E−, ∂R+, ∂E+, . . . ) in the co-moving frame (cf.
Fig. 5(e)).

A. Virtual pairs

Deformation of (nearly planar) waves due to instability
or heterogeneous refractoriness can lead to intersection of
any pair of adjacent level sets (e.g., ∂E+ and ∂R−) and,
correspondingly, creation of a new pair of spiral cores.
From the topological perspective, there are four distinct
possibilities shown in Figs. 5(b), 5(d), 5(f), or 5(h). The
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

FIG. 5. Topologically distinct configurations with transitions
which tend to increase the number of wavelets and cores. The
wave train moves from right to left. Solid and dashed black
lines represent, respectively, the wavefront ∂E+ and waveback
∂E−. Solid and dashed white lines represent, respectively, the
leading edge ∂R+ and trailing edge ∂R− of the refractory re-
gion. The phase singularities of opposite chirality are shown
as white (black) circles. Gray lines show topologically allowed
transitions that are not observed, gray arrows – those that do
occur, with thickness reflecting their frequency. Slow transi-
tions associated with figure-8 re-entry are not shown.

corresponding configurations are all transient and only
persist for a fraction of the revolution time T of a typ-
ical spiral wave during topological transitions. Each of
these transient configurations can undergo a total of five
distinct topological transitions, including a reverse tran-
sition back to the initial configuration with nonintersect-
ing level sets, associated with the destruction of the two
new phase singularities. The other four persistent possi-
bilities will be considered in subsequent sections.

The transitions that correspond to crossing of two level
sets followed by the reverse transition (indicated by hori-
zontal or vertical double gray arrows in Fig. 5) produce a
“virtual” core pair that appears and quickly disappears,
restoring the original topological structure. The number
of spiral cores and wavelets before and after these transi-
tions remains exactly the same, so while such events do
occur rather frequently they do not play a dynamically
important role and can be safely ignored. As discussed
below, the topological transitions identified with the ar-
rows in Fig. 5 are all very fast; they occur on a time scale
much shorter than the typical rotation period of a spiral.
The much slower transitions between panels 5(a)→ 5(b)
→ 5(c) → 5(f) → 5(i) → 5(h) → 5(g) → 5(d) → · · ·
associated with figure-8 re-entry for two well-separated

0
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0.15

(a)

0 0.05 0.1 0.15
10 -2

10 -1

10 0

(b)

FIG. 6. Trajectories xo(t) for a virtual pair of phase singular-
ities (a) and the distance between them as a function of time
(b).

counter-rotating spirals are not shown for clarity. While
the topology of some level sets (either ∂E of ∂R) changes
during these transitions, neither the topological charge
nor the number of phase singularities does, so these are
not proper topological transitions, as defined in Section
II C. In contrast, the topology of ∂E and ∂R may not
change during the proper topological transitions.

The trajectories of the two phase singularities and the
distance between them in a representative example of a
virtual pair are shown in Fig. 6. The phase singularities
do not move far from their initial positions and remain
close at all times. In fact, the distance between them
never exceeds a fraction of the typical separation d0 be-
tween persistent spiral cores (to be be discussed in more
detail in Sect. V). Since the level sets are smooth curves,
their intersections that define the positions of the cores
move with infinite velocities at the time instants when
the cores are created and destroyed. As a result, their
motion near those times can not be resolved using time
stepping, explaining the gaps at the beginning and the
end of the trajectories in Fig. 6(a).

The transient configuration shown in Fig. 5(f) deserves
a special mention. It corresponds to the phenomenon
of “back-ignition” observed in some reaction-diffusion
models whereby the waveback can become a source of a
new backward propagating wave under appropriate con-
ditions. While topologically permissible, this configura-
tion is only observed as a very short transient in the
present model, reflecting the asymmetry of initial condi-
tions imposed by the dynamics. The relative likelihood
of the four transient configurations shown in Figs. 5(b),
5(d), 5(f), and 5(h) can in principle be computed using
stability analysis of a planar wave train solution for any
tissue model, but this is outside the scope of the present
study.



9

B. Wavelet/pair creation

Next consider the transitions from the four intermedi-
ate configurations shown in Figs. 5(b), 5(d), 5(f), and
5(h) to configurations other than the initial one shown
in Fig. 5(e). For each of these four transient configura-
tions there are four distinct possibilities. Two possibili-
ties are shown in Fig. 5 (the other two will be discussed
in the next Section): either of the two level set fragments
connecting the cores can reconnect with the neighboring
level set of the same type. For instance, the configuration
shown in Fig. 5(h) can transform to the configuration
shown in Figs. 5(g) or 5(i). If the crossing and reconnec-
tion occur simultaneously, the transition occurs directly
between the persistent configuration shown in Fig. 5(e)
and one of the persistent configurations shown in Figs.
5(a), 5(c), 5(g) or 5(i) without passing through any of the
intermediate transient configurations. The dynamically
allowed direct transitions, as determined based on the
results of numerical simulations, are shown as diagonal
gray arrows.

Note that the transition between the configurations
shown in Fig. 5(e) and 5(a) corresponds to wave breakup.
It occurs when and where the wavefront reconnects with
the waveback of the same excitation wave55,59 as a re-
sult of conduction block. Since this topological process
increases the number of disconnected excited regions, it
is quite natural to find that it plays an important role
in the transition from, say, normal rhythm or tachycar-
dia (featuring a single excitation wave) to AF (featuring
many separate wavelets). While wave breakup may be
prevalent during the initial stage when AF is being estab-
lished, we have not found a single instance of this topo-
logical event in our numerical simulations of sustained
spiral wave chaos, casting serious doubt on the premise
that wave breakup plays a dynamically important role in
maintaining AF in tissue or in other models.

Our numerical simulations reveal only one topological
process that leads to a lasting increase in the complexity
of the pattern. This process which we call “wave coa-
lescence” corresponds to the transition from the initial
configuration shown in Fig. 5(e) to the final configura-
tion shown in Fig. 5(i), either directly or through the
intermediate transient configurations shown in Figs. 5(f)
and 5(h). A representative example from the simulations
is shown in Fig. 7, where a purple rectangle marks the
region of interest. Outside of this region the wavefronts
are well-separated from the refractory tails, but inside the
separation is markedly smaller (cf. Fig. 7(a)). The sepa-
ration quickly decreases (cf. Fig. 7(b)) until the level sets
∂E− and ∂R− cross and two new spiral cores with op-
posite chirality are created (cf. Fig. 7(c)). Immediately
after this the two parts of the level set ∂E+ reconnect,
bringing the configuration to the topological state shown
in Fig. 5(i). The cores separate (cf. Fig. 7(c)) and the
excited regions of two subsequent waves coalesce in the
gap flanked by these two cores.

Due to the high curvature of ∂E the two new cores are

(a) (b)

(c) (d)

FIG. 7. Snapshots of u1(t,x) at times t = 0.375T , t = 0.583T ,
t = 0.625T , and t = 0.813T featuring wave coalescence in a
chaotic multi-spiral state around t ≈ 0.60T . The purple box
indicates the region of interest. The notations are the same
as in Fig. 5.
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FIG. 8. Trajectories xo(t) of a pair of phase singularities post-
coalescence (a) and the distance between them as a function
of time (b).

quickly pulled apart, and two new counter-rotating spiral
waves emerge, “locking in” the resulting topological con-
figuration. This is illustrated by Fig. 8 which shows the
trajectories of the cores and the distance between them.
It is worth noting that, before the spiral waves complete
even half a revolution, the separation between the cores
approaches the typical equilibrium distance37 d0.

Our numerical simulations did not produce any exam-
ples of topological transitions to the configurations shown
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in Figs. 5(c) or 5(g). In the horizontal band bounded
by the cores (indicated by lighter-shade gray), the corre-
sponding states are characterized by the voltage variable
that is changing slowly in space, since the distance d be-
tween the minimum of u1 (dashed white line ∂R−) and
the maximum of u1 (solid white line ∂R+) is extremely
large. Hence, the term D11∇2u1 ∝ d−2 in (1) is negligi-
ble. Since D22 is small, we can ignore the diffusive terms
D22∇2u2 as well and consider all cells in this region to
be spatially decoupled, such that their dynamics is de-
scribed well by (4) and the phase diagram shown in Fig.
1(a). Consider the part of the band where u1 is slowly
and monotonically increasing in time (to the left of ∂R+

in Fig. 5(c)) or decreasing in time (to the left of ∂R− in
Fig. 5(g)). The cells in this region should be in the state
that lies close to either one of the stable u1-nullclines
(f−1 = 0 in the former case and f+

1 = 0 in the latter
case). According to Fig. 1(a), this entire region should
lie either to the left or to the right of the u2-nullcline,
so ∂tu2 should be sign-definite, while in both Fig. 5(c)
and 5(g) the sign of ∂tu2 changes (when the level set ∂E
connecting the two phase singularities is crossed). Hence,
while these configurations are not forbidden on topolog-
ical grounds, they are forbidden dynamically.

Furthermore, we have not observed transitions from
the persistent configurations shown in Figs. 5(a), 5(c),
5(g), and 5(i) to either the transient configurations shown
in Figs. 5(b), 5(d), 5(f), and 5(h) or the persistent config-
uration shown in Fig. 5(e). While these transitions are
allowed topologically, they appear to be forbidden dy-
namically. The only dynamically allowed (direct or indi-
rect) transition irreversibly transforms the configuration
with no spiral cores (Fig. 5(e)) to the configuration (Fig.
5(i)) with two spiral cores, increasing the total number
of cores by two and the number of wavelets by one.

C. Wavelet/pair destruction

Finally, let us consider the topological transitions from
the four intermediate configurations that have not been
considered in the previous sections. We have redrawn
these four configurations in Fig. 9 in the same locations
as in Fig. 5, dropping all non-essential level sets. For
each of these intermediate configurations there are two
possibilities which involve reconnection between the two
extended branches of a level set that terminate at the
cores. For instance, the configuration shown in Fig. 9(h)
can transform to the configurations shown in Figs. 9(g)
or 9(i). None of these transitions (shown as horizontal or
vertical gray lines), in either the forward or the reverse
direction, have been observed in numerical simulations,
however.

As we discussed previously, if the crossing and recon-
nection of the level sets occur simultaneously, the config-
uration transitions directly between the persistent con-
figuration with no level set intersections (Fig. 9(e)) and
one of the persistent configurations with a pair of inter-

+ - 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

FIG. 9. Topologically distinct configurations with transitions
that tend to decrease the number of wavelets and cores. No-
tations are the same as in Fig. 5. Slow transitions associated
with figure-8 re-entry are not shown.

sections shown in Figs. 9(a), 9(c), 9(g), and 9(i) without
passing through any of the intermediate configurations.
The dynamically allowed direct transitions observed in
the simulations are shown as diagonal gray arrows. Note
that again there is no time-reversal symmetry: only the
transitions that destroy the existing core pairs are dy-
namically allowed. Therefore the observed direct tran-
sitions shown in Fig. 9 reduce the net number of spiral
cores and wavelets balancing the increase due to wave
coalescence.

The configurations shown in Figs. 9(a), 9(c), 9(g), and
9(i) all describe a pair of counter-rotating spiral waves. In
particular, the configurations in Figs. 9(c) and 9(g) cor-
respond to multi-spiral states (wavefronts and/or wave-
backs connect spiral cores inside and outside the region
shown) and hence are quite typical. On the other hand,
the configurations in Figs. 9(a) and 9(i) correspond to
configurations with a single pair of spirals (wavefronts
and wavebacks connect the phase singularities inside the
region shown) and are never observed during sustained
spiral wave chaos. Consequently, only transitions from
the configurations in Figs. 9(c) and 9(g) are found in the
simulations, with the vast majority of transitions involv-
ing the former configuration.

To understand why and when this transition hap-
pens, consider the interaction between a pair of isolated
counter-rotating spiral waves separated by distance d.
(The interaction is short-range, so the presence of other,
remote, spiral wave cores does not change the outcome.)
Using the approximate mirror symmetry of the configu-
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(a) (b)

(c) (d)

FIG. 10. Snapshots of u1(t,x) at times t = 0.206T , t =
0.427T , t = 0.500T , and t = 0.720T featuring wave collapse
due to conduction block in a chaotic multi-spiral state around
t ≈ 0.5T . The purple box indicates the region of interest. The
notations are the same as in Fig. 5.

ration, the dynamics can be understood by considering a
single spiral interacting with a planar no-flux boundary
at a distance ζ = d/2. As we showed previously37,58,
at large separations the spiral cores can be considered
essentially non-interacting, while at smaller separations
the equilibrium distance d becomes quantized, with the
smallest stable separation37 equal to d0 = 2ζ0 ≈ 40 (10.4
mm in dimensional units) for the values of the parame-
ters considered in this study. For separations below some
critical distance dc < d0, the cores attract each other,
eventually colliding and destroying both spiral waves. As
the cores approach each other, the wavefront confined be-
tween them collapses, so we will refer to this process as
“wavelet collapse” or “wave collapse”.

The details of wave collapse depend on the relation be-
tween the initial phase of the spiral waves and separation
between their cores. A very typical example of wave col-
lapse is shown in Fig. 10. In this particular example we
find that the curvature of the wavefront becomes quite
large before collapse. The curvature at which this hap-
pens can be related to the mechanism of conduction block
discussed in Sect. III B. Since the cores are moving rela-
tively slowly prior to wave collapse (cf. Fig. 10(a)), as the
wavefront propagates its curvature gradually increases
(cf. Fig. 10(b)). The largest value of the curvature is
related to the distance between the cores, κ−1 ≈ d/2.

0
0.85

0.2

0.7

0.4

0.6

0.80.9 0.80.9

(a)

0 0.2 0.4 0.6
10 -2

10 -1

10 0

(b)

FIG. 11. Trajectories xo(t) for a pair of phase singularities
during wave collapse (a) and the distance between them as a
function of time (b).

Once the curvature becomes comparable to the inverse
of the critical radius rc ≈ 6, the wave stops propagating,
the cores slide towards each other along the wavefront
and annihilate (cf. Fig. 10(c)), the wavebacks merge,
and the wave starts to retract (cf. Fig. 10(d)).

This picture predicts that the minimal distance at
which the spiral cores with opposite chirality can per-
sist without annihilating with each other is given by
dc = 2rc = 12 (3.1 mm in dimensional units). This
value is in good agreement with the critical isthmus width
(2.5 mm) found for conduction block in isolated sheets of
ventricular epicardial muscle with an expanding geom-
etry56. Our numerical simulations show that the min-
imal distance is dc = 16 (4.2 mm), also close to the
predicted value. The core trajectories and the distance
between them in the example from Fig. 10 are shown
in Fig. 11. The initial distance in this case was d = 18
(4.7 mm), illustrating that, under appropriate conditions,
wave collapse can also occur for cores separations some-
what larger than dc (but still less than d0).

The transition between the configurations shown in
Figs. 9(g) and 9(e) corresponds to merger between two
wavefronts that were originally separated by a waveback.
Hence, we shall refer to this topological transition as
a “wave merger” event. Wave mergers, however, are
extremely rare, so a reduction in the total number of
cores and wavelets is due almost entirely to wave col-
lapse events. This is similar to the dynamical asym-
metry between the wave breakup and wave coalescence
events. Therefore, dynamical equilibrium in sustained
spiral wave chaos can be understood, at least in the
Karma model, as a balance between wave coalescence
and wave collapse.

V. DYNAMICAL EQUILIBRIUM

Although the topological description itself is not quan-
titative, it helps identify the key dynamical mechanisms,
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FIG. 12. Probability distribution of pairwise distances P (d)
in sustained spiral wave chaos on a square domain with side
L = 192 (5.03 cm) and no-flux boundary conditions (dashed)
or periodic boundary conditions (solid).

such as wave coalescence and wave collapse, responsi-
ble for maintaining AF. This should, in turn, enable a
quantitative description of the dynamics in general and
dynamical equilibrium in particular and give the answers
to open questions that have been debated for a long time.
For instance, it is presently not well understood either
what the minimal size of tissue is that can sustain AF
or what the minimal number of wavelets is in sustained
AF. The leading-circle concept5 suggests that the num-
ber of wavelets that the atria can accommodate should be
related to the wavelength. Moe’s computer model7 pre-
dicted that between 23 and 40 wavelets are necessary for
the maintenance of AF, while Allessie8 places the mini-
mal number of wavelets between four and six.

These hypotheses can be easily tested in the context of
the Karma model. Let us start by determining whether
the wavelength (λ = 78 for the values of parameters con-
sidered here) is a relevant length scale. The size (diam-
eter) of a reentry circle with the perimeter equal to the
wavelength is d = λ/π ≈ 25 which is larger that the min-
imal separation dc between persistent spiral wave cores,
but considerably smaller than the minimal stable sepa-
ration d0 between the cores.

To show that d0 is the relevant length scale, we com-
puted the probability density function P (d) for core-core
separation on a square domain of side L = 192 (this is the
smallest domain with no-flux boundary conditions that
supports sustained spiral wave chaos). For each time
t and each core j we computed the distance dj to the
nearest core (cf. Sect. II C), then averaged over j and t.
The resulting distribution, for both no-flux and periodic
boundary conditions, is shown in Fig. 12. In both cases
we find that the distribution P (d) is rather narrow, with
the maximum achieved at d = d0.

The effect of the boundary conditions on the shape
of the distribution is somewhat subtle: on a bi-periodic
domain, the probability of large core separations (d =
O(L)) is decreased compared with the same size domain
with no-flux boundary conditions. Effectively, as there

FIG. 13. Probability distribution of the number of cores
P (nc) during sustained spiral wave chaos on a square domain
with side L = 192 (5.03 cm) and periodic boundary condi-
tions. Note that odd-valued numbers of cores are forbidden
by the boundary conditions.

must always be a chirally-matched pair on the periodic
domain, the furthest these cores may be is dmax = L/

√
2,

as opposed to an isolated spiral matched with it’s mirror
image across the no-flux boundary, which corresponds
to maximal distance dmax =

√
2L. Thus, on a periodic

domain, the maximal accessible distance is precisely 1/2
the maximal distance available on a no-flux domain of
the same size.

The upper bound for the number of spiral cores can
be estimated as the ratio of the total area of the domain
(i.e., L2) to the area of the smallest tiles22 supporting one
persistent spiral wave (i.e., d2

0), that is n̄c < L2/d2
0 = 23

(in fact, we should have n̄c ≤ 22 since the net topological
charge is zero). In reality the tiles tend not to be squar-
ish and have a larger area on average, giving a lower
average number of spiral cores, n̄c = 10, as the prob-
ability distribution function P (nc) illustrates (cf. Fig.
13). The number nw of separate wavelets is exactly half
of the number nc of cores (on a domain with periodic
boundary conditions), so on average n̄w = n̄c/2 ≈ 5, in
perfect agreement with the results of Allessie8. The num-
ber of cores exhibits considerable fluctuation (between 4
and 16), correspondingly the number of wavelets varies
between 2 and 8. The likelihood of these extreme values
is, however, rather small (an order of magnitude smaller
than that corresponding to the average value).

The observation that the minimal number of wavelets
is just two is a sign that the dynamics are on the border
of spontaneous collapse of spiral wave chaos (recall that
our domain is just large enough to sustain this regime).
We should have P (0) = 0, because once all the spiral
cores disappear, so does the mechanism of reentry (at
least in our homogeneous model), resulting in a transi-
tion to the rest state or, in the presence of pacing, normal
rhythm. The smallest number of spiral cores required
for reentry (in a domain with periodic boundary condi-
tions) is two, so one could, in principle, expect P (2) to be
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nonzero. However, as our results show, the mechanism
that sustains spiral wave chaos is wave coalescence, which
requires at least two wavelets, and therefore at least four
spiral cores, to be present.

VI. DISCUSSION

This paper presents a general topological approach for
studying spiral wave chaos in two-dimensional excitable
media. It is illustrated using the Karma model which,
in a certain parameter regime, produces dynamics that
are remarkably similar to those observed during atrial
fibrillation. Therefore, our results could shed new light
on this important and complicated phenomenon.

The confusing and often contradictory results regard-
ing the dynamical origins of AF reported in experimen-
tal and numerical studies are to some extent due to the
complexity of the patterns of excitation. The descriptive
language and intuition developed primarily in the con-
text of simple structures – plane or spiral waves – often
fail us when applied to states that are topologically com-
plicated and nonstationary. To give a few examples, the
mental picture of a spatially localized excitation wave,
or wavelet, that is bounded by a wavefront and a wave-
back falls apart when applied to complex multi-spiral
patterns since the boundary of one excited region is of-
ten composed of multiple wavefronts and wavebacks, as
Figs. 7 and 10 illustrate. As a result, the number of
excited regions almost never corresponds to the number
of wavelets. Neither is the notion of a spiral wave imme-
diately useful for describing such complicated patterns,
which only resemble spiral waves in small neighborhoods
of spiral cores. Similarly, a reduction of complicated field
configurations to the number and positions of phase sin-
gularities is also problematic, both because they appear,
move, and disappear for sustained spiral chaos and be-
cause identifying them using existing approaches, such
as phase mapping11,12, is notoriously unreliable when the
data is noisy.

This paper aims to rectify some of these difficulties by
introducing a topological description that can rigorously
and easily identify the dynamically important elements
of the excitation patterns – wavefronts, wavebacks, phase
singularities, etc. – without modeling assumptions and
in a manner that can be implemented in both simulations
and experiments. By defining the phase singularities
as intersections of level sets of an appropriately defined
phase field, this topological description directly connects
the dynamics of excitation waves and phase singulari-
ties; it can be used not only to quantify and classify the
excitation patterns, but also to identify the dynamical
mechanisms that lead to qualitative changes in the pat-
tern. In particular, we show that the qualitative changes
can be conveniently described and classified based on the
dynamics of spiral cores which are created or destroyed
in pairs, leading to an increase or decrease in the number
of wavelets, with a one-to-one correspondence between

the number of cores and wavelets.
The topological description also allowed us to iden-

tify the dominant dynamical mechanisms responsible for
maintaining AF in a model of atrial tissue. In particular,
it allowed us to make a major discovery with implica-
tions that, in all likelihood, go far beyond the simple
model considered here. We found that wave breakup due
to conduction block that is widely believed to be the
key mechanism responsible for maintaining AF plays no
role whatsoever in sustaining this regime. While wave
breakup does play a key role in the transition to AF, it is
a dynamically and topologically distinct event – wave co-
alescence – that is responsible for maintaining AF. Wave
coalescence which leads to the increase in the number of
spiral cores and wavelets is balanced by wave collapse
which decreases the number of spiral cores and wavelets.
It is this delicate balance that is responsible for maintain-
ing the complexity of the pattern and of the dynamics
and it is this balance that controls whether AF persists
or terminates.

Past studies of the dynamical origins and control of
AF tended to focus solely on the mechanism(s) that lead
to an increase in the complexity of the pattern. Indeed
suppressing the processes that generate new spiral cores
and new wavelets is one way to terminate or prevent AF.
However, enhancing the processes that destroy the spiral
cores and wavelets could be just as effective. Therefore,
both wave coalescence and wave collapse are attractive
targets for electrical, surgical, and pharmacological ap-
proaches to the treatment of AF. While this study has not
focused on the interaction of excitation waves with no-
flux boundaries, the methods and approaches presented
here are applicable to this situation as well. Hence topo-
logical analysis could be quite helpful for improving treat-
ment of chronic AF using surgical procedures such as ab-
lation that effectively introduce additional boundaries.

In conclusion, we should point out that our results
raise new questions regarding the role of conduction block
in maintaining AF. While conduction block undoubtedly
plays a crucial role in wave collapse, it is not at all clear
that it is relevant in wave coalescence. Therefore, quite
paradoxically, we find that conduction block plays a more
important role in decreasing the complexity of the exci-
tation pattern than in increasing its complexity. Further
studies are needed in order to fully understand the dy-
namical mechanisms behind wave coalescence, wave col-
lapse, and possibly other topologically allowed events im-
portant in maintaining AF using more detailed and phys-
iologically accurate models of atrial tissue.
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Appendix A: Application to more realistic action potentials

The topological approach introduced here is suffi-
ciently general to be extended to much more complicated
electrophysiological models. For example, the definition
of the leading and trailing edges of the refractory region
(17) relies solely on the voltage variable, while the defini-
tion (11) of the wavefronts and wavebacks can be trivially
generalized to an m-variable reaction-diffusion model by
choosing the “weighting” vector a = [a1, . . . , am] to prop-
erly represent the physiological role of different variables
in triggering the depolarization front. The phase singu-
larities can then be defined again as the intersection of
the boundaries ∂E and ∂R, although this does not guar-
antee that (16) will be satisfied for m > 2.

For illustration, we used such a generalization to iden-
tify the wavefronts, wavebacks, and phase singularities in
the four-variable minimal model of Bueno-Orovio et al.60,
considering only the contribution from a single slow vari-
able, a = [0, 0, 1, 0], as a simple approximation. A vir-
tual pair event shown in Fig. 14 provides an illustration
that these definitions are equally successful in describing
topological changes in a substantially more complex and
detailed model, which is capable of producing quantita-
tively accurate description of excitation patterns in vari-
ous types of cardiac tissues, given appropriate choices of
parameters (in the present example we used the epicar-
dial parameter set).

The only complication arises when the diffusion coeffi-
cients for the slow variable(s) vanish identically, since this
can lead to subtle artifacts when discontinuities of the ki-
netics, e.g., in the switching between on and off states,
combine with the high spatial gradients near the wave-
front. However, this issue is not a fault of the method,
but rather a consequence of the unphysical nature of the
simplified ionic kinetics, and can be easily rectified by
using an appropriately smoothed version of the model
kinetics (as we did in Karma model). Furthermore, even
without smoothing, one can simply define the wavefront
and waveback as the boundary of the excited region E
defined using the indicator function g(u) = a · ∂tu.
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