37 research outputs found

    ANTARES: the first undersea neutrino telescope

    Get PDF
    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given

    Roadmap to the multidisciplinary design analysis and optimisation of wind energy systems

    Get PDF
    A research agenda is described to further encourage the application of Multidisciplinary Design Analysis and Optimisation (MDAO) methodologies to wind energy systems. As a group of researchers closely collaborating within the International Energy Agency (IEA) Wind Task 37 for Wind Energy Systems Engineering: Integrated Research, Design and Development, we have identi_ed challenges that will be encountered by users building an MDAO framework. This roadmap comprises 17 research questions and activities recognised to belong to three research directions: model _delity, system scope and workow architecture. It is foreseen that sensible answers to all these questions will enable to more easily apply MDAO in the wind energy domain. Beyond the agenda, this work also promotes the use of systems engineering to design, analyse and optimise wind turbines and wind farms, to complement existing compartmentalised research and design paradigms.Wind Energ

    Numerical propagation of dynamic cracks using X-FEM

    No full text
    This paper presents an application of the eXtended Finite Element Method for numerical modeling of the dynamic cracks propagation. The numerical cracks representation is adapted to the time-dependent mechanical formulation, using the Heaviside step function for completely cutted elements and the cohesive model for crack tips. In order to find the propagation parameters, a crack evolution model is proposed. The numerical implementation is achieved in new explicit FE module. A numerical example is proposed for proving the computational efficiency of this new module

    Evaluating Damage with Digital Image Correlation: C. Applications to Composite Materials

    No full text
    International audienceThe present chapter is devoted to the evaluation of damage with digital image correlation (DIC). Applications will focus on composite materials. The latter ones are designed to accommodate microcracks through suited microstructures. As such, they constitute a natural class of materials for which damage (or rather damages) is an essential feature of their mechanical behavior. As discussed in a previous chapter (addressing detection of physical damage), DIC can reveal the elementary mechanisms (e.g., dense distribution of microcracks, crack branching along weak interfaces, progressive debonding of interfaces, and subsequent pullout or delamination). It will also be shown that damage laws can be identified with the help of DIC from mechanical tests imaged at different stages of loading. The followed strategy will be seen as reminiscent of the one that was used in the previous chapter dedicated to 1D (i.e., beam like) geometries (from physical to mechanical damage). Here, it will be necessary to couple DIC with finite element models. The benefit will be that in addition to the identified law, a full validation is naturally offered from the highly redundant piece of information contained in the measured displacement fields
    corecore