2,384 research outputs found
Breakdown of Conformal Invariance at Strongly Random Critical Points
We consider the breakdown of conformal and scale invariance in random systems
with strongly random critical points. Extending previous results on
one-dimensional systems, we provide an example of a three-dimensional system
which has a strongly random critical point. The average correlation functions
of this system demonstrate a breakdown of conformal invariance, while the
typical correlation functions demonstrate a breakdown of scale invariance. The
breakdown of conformal invariance is due to the vanishing of the correlation
functions at the infinite disorder fixed point, causing the critical
correlation functions to be controlled by a dangerously irrelevant operator
describing the approach to the fixed point. We relate the computation of
average correlation functions to a problem of persistence in the RG flow.Comment: 9 page
Germanium Enrichments in Sedimentary Rocks in Gale Crater, Mars: Constraining the Timing of Alteration and Character of the Protolith
Rocks enriched in Ge have been discovered in Gale Crater, Mars, by the Alpha-particle X-ray spectrometer (APXS) on the Mars Science Lab (MSL) rover, Curiosity. The Ge concentrations in Gale Crater (commonly >50 ppm) are remarkably high in comparison to Earth, where Ge ranges from 0.5-4.0 ppm in igneous rocks and 0.2-3.3 ppm in siliciclastic sediment. Primary meteoritic input is not likely the source of high Ge because Ge/Ni in chondrites (approx.0.003) and irons (<0.04) is lower than in Gale rocks (0.08-0.2). Earth studies show Ge is a useful geochemical tracer because it is coherent with Si during magmatic processes and Ge/Si varies less than 20% in basalts. Ge and Si fractionate during soil/regolith weathering, with Ge preferentially sequestered in clays. Ge is also concentrated in Cu- and Zn-rich hydrothermal sulfide deposits and Fe- and Mnrich oxide deposits. Other fluid-mobile elements (K, Zn, Cl, Br, S) are also enriched at Gale and further constrain aqueous alteration processes. Here, we interpret the sediment alteration history and present a possible model for Ge enrichments at Gale involving fluid alteration of the protolith
Can disordered mobile phone use be considered a behavioral addiction? An update on current evidence and a comprehensive model for future research
Despite the many positive outcomes, excessive mobile phone use is now often associated with potentially harmful and/or disturbing behaviors (e.g., symptoms of deregulated use, negative impact on various aspects of daily life such as relationship problems, and work intrusion). Problematic mobile phone use (PMPU) has generally been considered as a behavioral addiction that shares many features with more established drug addictions. In light of the most recent data, the current paper reviews the validity of the behavioral addiction model when applied to PMPU. On the whole, it is argued that the evidence supporting PMPU as an addictive behavior is scarce. In particular, it lacks studies that definitively show behavioral and neurobiological similarities between mobile phone addiction and other types of legitimate addictive behaviors. Given this context, an integrative pathway model is proposed that aims to provide a theoretical framework to guide future research in the field of PMPU. This model highlights that PMPU is a heterogeneous and multi-faceted condition
Leaf litter identity alters the timing of lotic nutrient dynamics
1. The effects of resource quality on ecosystems can shift through time based on preferential use and elemental needs of biotic consumers. For example, leaf litter decomposition rates are strongly controlled by initial litter quality, where labile litter is processed and depleted more quickly than recalcitrant litters.
2. We examined the effect of this processing continuum on stream nutrient dynamics.We added one of four different litter compositions differing in litter quality (cot ‐tonwood [Populus deltoides], labile; sycamore [Platanus occidentalis], recalcitrant; bur oak [Quercus macrocarpa], recalcitrant; and mixed [equivalent mixture of pre ‐vious three species]) to 12 large (c. 20 m long, with riffle, glide and pool sections) outdoor stream mesocosms to assess the effect of litter species composition on whole‐stream nutrient uptake. Nutrients were dosed once weekly for 8 weeks to measure uptake of NH4–N, NO3–N, and PO4–P. We also measured changes in lit ‐ter C, N, and P content on days 28 and 56 of the study.
3. Nutrient uptake rates were highly variable, but occasionally very different among litter treatments (c. 5× between highest and lowest uptake rates by species). Uptake rates were generally greatest in cottonwood (labile) streams early in the study. However, during the last 4 weeks of the study, bur oak streams (recalci ‐trant) took up more nutrients than cottonwood streams, resulting in more cumu‐lative NO3–N uptake in bur oak than in cottonwood streams. Cumulative NO3–N uptake was greater in mixed streams than expected (non‐additive) on two dates of measurement, but was generally additive.
4. Changes in litter nutrient content largely corroborated nutrient uptake patterns, suggesting strong N immobilisation early in the study and some N mineralisation later in the study. P was strongly retained by most litters, but especially bur oak. Nutrient content of litter also largely changed additively, suggesting minimal evi ‐dence for non‐additive diversity effects on nutrient source/sink status.
5. Our results demonstrate that litter species identity can have whole‐ecosystem effects on stream nutrient dynamics, with important implications for the for fate of nutrients exported downstream. Further, diverse litter assemblages may serve as temporal stabilisers of ecosystem processes, such as nutrient sequestra‐tion, due to microbial nutrient requirements and differential decomposition rates, or the classic litter processing continuum.NSF, Grant/Award Number: DEB‐144259
Evidence for a Global Martian Soil Composition Extends to Gale Crater
The eolian bedform within Gale Crater referred to as "Rocknest" was investigated by the science instruments of the Curiosity Mars rover. Physical, chemical and mineralogical results are consistent with data collected from soils at other landing sites, suggesting a globally-similar composition. Results from the Curiosity payload from Rocknest should be considered relevant beyond a single, localized region with Gale Crater, providing key insights into planetary scale processes
Characterization of silicon drift detectors with electrons for the TRISTAN project
Sterile neutrinos are a minimal extension of the standard model of particle physics. A promising model-independent way to search for sterile neutrinos is via high-precision β-spectroscopy. The Karlsruhe tritium neutrino (KATRIN) experiment, equipped with a novel multi-pixel silicon drift detector focal plane array and read-out system, named the TRISTAN detector, has the potential to supersede the sensitivity of previous laboratory-based searches. In this work we present the characterization of the first silicon drift detector prototypes with electrons and we investigate the impact of uncertainties of the detector\u27s response to electrons on the final sterile neutrino sensitivity
Characterization of Silicon Drift Detectors with Electrons for the TRISTAN Project
Sterile neutrinos are a minimal extension of the Standard Model of Particle
Physics. A promising model-independent way to search for sterile neutrinos is
via high-precision beta spectroscopy. The Karlsruhe Tritium Neutrino (KATRIN)
experiment, equipped with a novel multi-pixel silicon drift detector focal
plane array and read-out system, named the TRISTAN detector, has the potential
to supersede the sensitivity of previous laboratory-based searches. In this
work we present the characterization of the first silicon drift detector
prototypes with electrons and we investigate the impact of uncertainties of the
detector's response to electrons on the final sterile neutrino sensitivity.Comment: 18 pages, 8 figures. J. Phys. G: Nucl. Part. Phys. 48 01500
Search for short baseline nu(e) disappearance with the T2K near detector
8 pages, 6 figures, submitted to PRD rapid communication8 pages, 6 figures, submitted to PRD rapid communicationWe thank the J-PARC staff for superb accelerator performance and the CERN NA61 collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC and CFI, Canada; Commissariat `a l’Energie Atomique and Centre National de la Recherche Scientifique–Institut National de Physique Nucle´aire et de Physique des Particules, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; Russian Science Foundation, RFBR and Ministry of Education and Science, Russia; MINECO and European Regional Development Fund, Spain; Swiss National Science Foundation and State Secretariat for Education, Research and Innovation, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK. In addition participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; DOE Early Career program, USA
- …