249 research outputs found

    Three Phenolic and a Sterol Glycosides Identified for the First Time in Matthiola longipetala Growing in Tunisia

    Get PDF
    Three phenolic glycosides: 4-O-ß-D-glycopyranosyl zingerone 1, 4-O-ß-D-glycopyranosylhomovanillyl alcohol 2 and eugenol glycoside 3, together with 3-O-ß-D-glycopyranosyl sitosterol 4, were isolated and identified for the first time from the flowers of Matthiola longipetala (Crucifers) growing in Tunisia. The structures of 1, 2 and 3 were identified via their acetylated derivatives on the basis of the 1 and 2D NMR data analysis, mass spectrometry and IR spectroscopy

    Ecoregions in the Mediterranean Sea Through the Reanalysis of Phytoplankton Functional Types and Carbon Fluxes

    Get PDF
    In this work we produced a long‐term reanalysis of the phytoplankton community structure in the Mediterranean Sea and used it to define ecoregions. These were based on the spatial variability of the phytoplankton type fractions and their influence on selected carbon fluxes. A regional ocean color product of four phytoplankton functional types (PFTs; diatoms, dinoflagellates, nanophytoplankton, and picophytoplankton) was assimilated into a coupled physical‐biogeochemical model of the Mediterranean Sea (Proudman Oceanographic Laboratory Coastal Ocean Modelling System‐European Regional Seas Ecosystem Model, POLCOMS–ERSEM) by using a 100‐member ensemble Kalman filter, in a reanalysis simulation for years 1998–2014. The reanalysis outperformed the reference simulation in representing the assimilated ocean color PFT fractions to total chlorophyll, although the skill for the ocean color PFT concentrations was not improved significantly. The reanalysis did not impact noticeably the reference simulation of not assimilated in situ observations, with the exception of a slight bias reduction for the situ PFT concentrations, and a deterioration of the phosphate simulation. We found that the Mediterranean Sea can be subdivided in three PFT‐based ecoregions, derived from the spatial variability of the PFT fraction dominance or relevance. Picophytoplankton dominates the largest part of open ocean waters; microphytoplankton dominates in a few, highly productive coastal spots near large‐river mouths; nanophytoplankton is relevant in intermediate‐productive coastal and Atlantic‐influenced waters. The trophic and carbon sedimentation efficiencies are highest in the microphytoplankton ecoregion and lowest in the picophytoplankton and nanophytoplankton ecoregions. The reanalysis and regionalization offer new perspectives on the variability of the structure and functioning of the phytoplankton community and related biogeochemical fluxes, with foreseeable applications in Blue Growth of the Mediterranean Sea

    Sensitivity of Modeled CO2 Air–Sea Flux in a Coastal Environment to Surface Temperature Gradients, Surfactants, and Satellite Data Assimilation

    Get PDF
    This work evaluates the sensitivity of CO2 air–sea gas exchange in a coastal site to four different model system configurations of the 1D coupled hydrodynamic–ecosystem model GOTM–ERSEM, towards identifying critical dynamics of relevance when specifically addressing quantification of air–sea CO2 exchange. The European Sea Regional Ecosystem Model (ERSEM) is a biomass and functional group-based biogeochemical model that includes a comprehensive carbonate system and explicitly simulates the production of dissolved organic carbon, dissolved inorganic carbon and organic matter. The model was implemented at the coastal station L4 (4 nm south of Plymouth, 50°15.00’N, 4°13.02’W, depth of 51 m). The model performance was evaluated using more than 1500 hydrological and biochemical observations routinely collected at L4 through the Western Coastal Observatory activities of 2008—2009. In addition to a reference simulation (A), we ran three distinct experiments to investigate the sensitivity of the carbonate system and modeled air–sea fluxes to (B) the sea-surface temperature (SST) diurnal cycle and thus also the near-surface verticalgradients,(C)biologicalsuppressionofgasexchangeand(D)dataassimilationusingsatellite Earth observation data. The reference simulation captures well the physical environment (simulated SST has a correlation with observations equal to 0.94 with a p > 0.95). Overall, the model captures the seasonal signal in most biogeochemical variables including the air–sea flux of CO2 and primary production and can capture some of the intra-seasonal variability and short-lived blooms. The model correctlyreproducestheseasonalityofnutrients(correlation>0.80forsilicate,nitrateandphosphate), surface chlorophyll-a (correlation > 0.43) and total biomass (correlation > 0.7) in a two year run for 2008–2009. The model simulates well the concentration of DIC, pH and in-water partial pressure of CO2 (pCO2) with correlations between 0.4–0.5. The model result suggest that L4 is a weak net source of CO2 (0.3–1.8 molCm−2 year−1). The results of the three sensitivity experiments indicate that both resolving the temperature profile near the surface and assimilation of surface chlorophyll-a significantlyimpacttheskillofsimulatingthebiogeochemistryatL4andallofthecarbonatechemistry related variables. These results indicate that our forecasting ability of CO2 air–sea flux in shelf seas environments and their impact in climate modeling should consider both model refinements as means of reducing uncertainties and errors in any future climate projections

    Reanalysis in Earth System Science: Towards Terrestrial Ecosystem Reanalysis

    Get PDF
    A reanalysis is a physically consistent set of optimally merged simulated model states and historical observational data, using data assimilation. High computational costs for modelled processes and assimilation algorithms has led to Earth system specific reanalysis products for the atmosphere, the ocean and the land separately. Recent developments include the advanced uncertainty quantification and the generation of biogeochemical reanalysis for land and ocean. Here, we review atmospheric and oceanic reanalyses, and more in detail biogeochemical ocean and terrestrial reanalyses. In particular, we identify land surface, hydrologic and carbon cycle reanalyses which are nowadays produced in targeted projects for very specific purposes. Although a future joint reanalysis of land surface, hydrologic and carbon processes represents an analysis of important ecosystem variables, biotic ecosystem variables are assimilated only to a very limited extent. Continuous data sets of ecosystem variables are needed to explore biotic-abiotic interactions and the response of ecosystems to global change. Based on the review of existing achievements, we identify five major steps required to develop terrestrial ecosystem reanalysis to deliver continuous data streams on ecosystem dynamics

    ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels

    Get PDF
    The European Regional Seas Ecosystem Model (ERSEM) is one of the most established ecosystem models for the lower trophic levels of the marine food web in the scientific literature. Since its original development in the early nineties it has evolved significantly from a coastal ecosystem model for the North Sea to a generic tool for ecosystem simulations from shelf seas to the global ocean. The current model release contains all essential elements for the pelagic and benthic parts of the marine ecosystem, including the microbial food web, the carbonate system, and calcification. Its distribution is accompanied by a testing framework enabling the analysis of individual parts of the model. Here we provide a detailed mathematical description of all ERSEM components along with case studies of mesocosm-type simulations, water column implementations, and a brief example of a full-scale application for the north-western European shelf. Validation against in situ data demonstrates the capability of the model to represent the marine ecosystem in contrasting environments

    Synthesis of Ocean Observations Using Data Assimilation for Operational, Real-Time and Reanalysis Systems: A More Complete Picture of the State of the Ocean

    Get PDF
    Ocean data assimilation is increasingly recognized as crucial for the accuracy of real-time ocean prediction systems and historical re-analyses. The current status of ocean data assimilation in support of the operational demands of analysis, forecasting and reanalysis is reviewed, focusing on methods currently adopted in operational and real-time prediction systems. Significant challenges associated with the most commonly employed approaches are identified and discussed. Overarching issues faced by ocean data assimilation are also addressed, and important future directions in response to scientific advances, evolving and forthcoming ocean observing systems and the needs of stakeholders and downstream applications are discussed
    corecore