1,870 research outputs found

    Transfinite order dimension

    No full text
    We give two different transfinite extensions of the covering dimension based on the Borst's order of certain families of boundaries of basic open sets. We compare them and we study their main properties

    Dimension, inverse limits and GF-spaces

    Get PDF
    In this paper we characterize (covering) dimension in metrizable spaces in terms of fractal structures. We will also study dimension for compact metric spaces, giving a theorem relating dimension and a certain class of inverse limits, similar to that of Freudenthal

    Metastable anisotropy orientation of nematic quantum Hall fluids

    Full text link
    We analyze the experimental observation of metastable anisotropy resistance orientation at half filled quantum Hall fluids by means of a model of a quantum nematic liquid in an explicit symmetry breaking potential. We interpret the observed ``rotation'' of the anisotropy axis as a process of nucleation of nematic domains and compute the nucleation rate within this model. By comparing with experiment, we are able to predict the critical radius of nematic bubbles, Rc∼2.6μmR_c\sim 2.6 \mu m . Each domain contains about 10410^4 electrons.Comment: 10 pages, 8 figures, final version as will appear in PR

    Sedimentology and depositional architecture of tufas deposited in stepped fluvial systems of changing slope: Lessons from the quaternary añamaza valley (Iberian Range, Spain)

    Get PDF
    The Pleistocene and Holocene tufas of the Añamaza valley (stepped build-ups, up to 70 m thick, along the valley) consist of several depositional stages separated by erosional surfaces. Eight associations of tufa and related carbonate facies, plus minor polygenic detrital facies, represent the processes that occurred in different fluvial and related environments. The bedrock lithology and structure controlled the location of the knickpoints along the valley and allowed separation of two stepped stretches with distinct conceptual facies models. The moderate-slope model includes extensive standing-water areas dammed by barrage-cascades. In the lakes, bioclastic silts, sands and limestones along with phytoclastic and marly, at places peaty, sediments formed. Abundant stem phytoherms account for extensive palustrine areas. The high-slope model consists of smaller dammed areas between close-up cascades and barrage-cascades, which were composed primarily of moss phytoherms and phytoclastic tufas. An outstanding feature is the extensive steep reach with phytoclastic and polygenic detrital sediments, and stepped cascades consisting of stromatolitic and moss phytoherms. There, the steep slope limited the preservation of stem phytoherms and favoured erosion. The geometry and thickness of the sedimentary fill (wedge-shaped units composed of cascade and barrage-cascade deposits downstream, and dammed and gentle-sloped channel deposits upstream) are therefore different for each model. Multi-storey wedges are a distinctive feature of the high-slope model. The initial knickpoint geometry and the tufa aggradation/progradation ratio on such steep surfaces (for example, related to changes in discharge) controlled the growth style of the cascades or barrage-cascades and, hence, the extent, thickness and vertical evolution of the upstream deposits. The sedimentological attributes and stable-isotope composition of the carbonate facies suggest a higher and more variable precipitation/evaporation ratio during the Pleistocene than during the Holocene, consistent with an overall decrease in the river discharge. This evolution was coupled with warm conditions, which prevailed during the stages of tufa formation. These results may help to assess architectural patterns in interpreting other basins, and underscore the significance of tufas as records of past hydrology and climate

    The backbone of the climate network

    Full text link
    We propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system, relying on the nonlinear mutual information of time series analysis and betweenness centrality of complex network theory. We show, that this approach reveals a rich internal structure in complex climate networks constructed from reanalysis and model surface air temperature data. Our novel method uncovers peculiar wave-like structures of high energy flow, that we relate to global surface ocean currents. This points to a major role of the oceanic surface circulation in coupling and stabilizing the global temperature field in the long term mean (140 years for the model run and 60 years for reanalysis data). We find that these results cannot be obtained using classical linear methods of multivariate data analysis, and have ensured their robustness by intensive significance testing.Comment: 6 pages, 5 figure

    Optimisation of Multilayer Perceptrons Using a Distributed Evolutionary Algorithm with SOAP

    Full text link
    Abstract. SOAP (simple object access protocol) is a protocol that al-lows the access to remote objects independently of the computer archi-tecture and the language. A client using SOAP can send or receive ob-jects, or access remote object methods. Unlike other remote procedure call methods, like XML-RPC or RMI, SOAP can use many different transport types (for instance, it could be called as a CGI or as sockets). In this paper an approach to evolutionary distributed optimisation of multilayer perceptrons (MLP) using SOAP and language Perl has been done. Obtained results show that the parallel version of the developed programs obtains similar or better results using much less time than the sequential version, obtaining a good speedup. Also it can be shown that obtained results are better than those obtained by other authors using different methods.
    • …
    corecore