189 research outputs found

    Depinning and dynamics of vortices confined in mesoscopic flow channels

    Get PDF
    We study the behavior of vortex matter in artificial flow channels confined by pinned vortices in the channel edges (CE's). The critical current JsJ_s is governed by the interaction with static vortices in the CE's. We study structural changes associated with (in)commensurability between the channel width ww and the natural row spacing b0b_0, and their effect on JsJ_s. The behavior depends crucially on the presence of disorder in the CE arrays. For ordered CE's, maxima in JsJ_s occur at matching w=nb0w=nb_0 (nn integer), while for wnb0w\neq nb_0 defects along the CE's cause a vanishing JsJ_s. For weak CE disorder, the sharp peaks in JsJ_s at w=nb0w=nb_0 become smeared via nucleation and pinning of defects. The corresponding quasi-1D nn row configurations can be described by a (disordered)sine-Gordon model. For larger disorder and wnb0w\simeq nb_0, JsJ_s levels at 30\sim 30 % of the ideal lattice strength Js0J_s^0. Around 'half filling' (w/b0n±1/2w/b_0 \simeq n\pm 1/2), disorder causes new features, namely {\it misaligned} defects and coexistence of nn and n±1n \pm 1 rows in the channel. This causes a {\it maximum} in JsJ_s around mismatch, while JsJ_s smoothly decreases towards matching due to annealing of the misaligned regions. We study the evolution of static and dynamic structures on changing w/b0w/b_0, the relation between modulations of JsJ_s and transverse fluctuations and dynamic ordering of the arrays. The numerical results at strong disorder show good qualitative agreement with recent mode-locking experiments.Comment: 29 pages, 32 figure

    Probing the nuclide 180W for neutrinoless double-electron capture exploration

    Full text link
    The mass difference of the nuclides 180W and 180Hf has been measured with the Penning-trap mass spectrometer SHIPTRAP to investigate 180W as a possible candidate for the search for neutrinoless doubleelectron capture. The Q-value was measured to 143.20(27)keV. This value in combination with the calculations of the atomic electron wave functions and other parameters results in a half-life of the 0+ \rightarrow 0+ ground-state to ground-state double-electron capture transition of approximately 5\cdot10E27 years/^2

    Precision Measurement of the First Ionization Potential of Nobelium

    Get PDF
    One of the most important atomic properties governing an element’s chemical behavior is the energy required to remove its least-bound electron, referred to as the first ionization potential. For the heaviest elements, this fundamental quantity is strongly influenced by relativistic effects which lead to unique chemical properties. Laser spectroscopy on an atom-at-a-time scale was developed and applied to probe the optical spectrum of neutral nobelium near the ionization threshold. The first ionization potential of nobelium is determined here with a very high precision from the convergence of measured Rydberg series to be 6.626   21 ± 0.000   05     eV . This work provides a stringent benchmark for state-of-the-art many-body atomic modeling that considers relativistic and quantum electrodynamic effects and paves the way for high-precision measurements of atomic properties of elements only available from heavy-ion accelerator facilities
    corecore