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Abstract. We study numerically and analytically the behaviour of vortex matter
in artificial flow channels confined by pinned vortices in the channel edges (CEs).
The critical current density Js for channel flow is governed by the interaction
with the static vortices in the CEs. Motivated by early experiments which showed
oscillations of Js on changing (in)commensurability between the channel width w

and the natural vortex row spacing b0, we study structural changes associated
with (in)commensurability and their effect on Js and the dynamics. The behaviour
depends crucially on the presence of disorder in the arrays in the CEs. For ordered
CEs, maxima in Js occur at commensurability w = nb0 (n is an integer), while
for w �= nb0 defects along the CEs cause a vanishing Js. For weak disorder,
the sharp peaks in Js are reduced in height and broadened via nucleation and
pinning of defects. The corresponding structures in the channels (for zero or weak
disorder) are quasi-1D n row configurations, which can be adequately described
by a (disordered) sine-Gordon model. For larger disorder, matching between the
longitudinal vortex spacings inside and outside the channel becomes irrelevant
and, for w � nb0, the shear current Js levels at ∼30% of the value J0

s for the ideal
commensurate lattice. Around ‘half filling’ (w/b0 � n ± 1/2), the disorder leads
to new phenomena, namely stabilization and pinning of misaligned dislocations
and coexistence of n and n ± 1 rows in the channel. At sufficient disorder, these
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quasi-2D structures cause a maximum in Js around mismatch, while Js smoothly
decreases towards matching due to annealing of the misaligned regions. Near
threshold, motion inside the channel is always plastic. We study the evolution
of static and dynamic structures on changing w/b0, the relation between the
Js modulations and transverse fluctuations in the channels and find dynamic
ordering of the arrays at a velocity with a matching dependence similar to Js.
We finally compare our numerical findings at strong disorder with recent mode-
locking experiments, and find good qualitative agreement.
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1. Introduction

The depinning and dynamics of the vortex lattice (VL) in type II superconductors is exemplary for
the behaviour of driven, periodic media in the presence of a pinning potential [1]. Other examples
range from sliding surfaces exhibiting static and dynamic friction and absorbed monolayers [2]
to charge density waves (CDWs) [3], Wigner crystals [4] and (magnetic) bubble arrays [5].
Vortex matter offers the advantage that the periodicity a0 of the hexagonal lattice can be tuned by
changing the magnetic induction B. In addition, the effect of various types of pinning potentials
can be studied. This pinning potential, arising from inhomogeneities in the host material, can be
completely random, as in most natural materials, or can be arranged in periodic arrays using nano-
fabrication techniques [6, 7]. In a variety of cases, correlated inhomogeneities occur naturally in
a material, such as twin boundaries and the layered structure of the high-Tc superconductors [8].

Depinning of theVL in a random potential generally involves regions of plastic deformations
[9]–[13], i.e. coexistence of (temporarily) pinned domains with moving domains. For very weak
pinning, the typical domain size can exceed the correlation length Rc of the VL (see [11]) and
the weak collective pinning theory [14] can be successfully used to estimate the critical current
density Jc [15, 16]. However, as either the ratio of the VL shear modulus c66 and the elementary
pinning strength or the number of pins per correlated volume decreases, plastically deformed
regions start to have a noticeable effect on Jc. Recent imaging experiments [17] have shown
directly that the rise in Jc in weak pinning materials near the upper critical field Bc2, known as
the peak effect [15, 16], originates from such, rather sudden, enhancement of the defect density.
This strong reduction of the VL correlation length is also accompanied by a qualitative change in
the nature of depinning: for strong pinning, depinning proceeds through a dense network of quasi-
static flow channels (filaments) such that the typical width of both static and moving ‘domains’
has approached the lattice spacing [9, 10, 18, 19]. Depinning transitions via a sequence of static,
channel-like structures have also been observed experimentally via transport experiments [20].

In superconductors with periodic pinning arrays (PPAs), matching effects between the lattice
and the PPA become important. As shown first by Daldini and Martinoli [21, 22], when the
vortex spacing coincides with the periodicity of the potential, pronounced maxima can occur
in Jc, while at mismatch, defects (discommensurations) appear which gives rise to a reduced
Jc. In the last decade, many more studies of VLs in PPAs have appeared, both experimentally
and numerically. Pronounced commensurability effects were found in films with 2D periodic
pinning [6, 7, 23] for flux densities equal to (integers of ) the density of dots. In these systems,
vortex chains at interstitial positions of the periodic arrays (e.g. at the second matching field of
a square pinning array) can exhibit quasi-1D motion under the influence of the interaction with
neighbouring, pinned vortices [24], as has also been observed in numerical simulations [25].
In addition, these simulations have revealed that, depending on the vortex interactions and the
symmetry or strength of the PPA, a rich variety of other states and dynamic transitions can occur,
often leading to peculiar transport characteristics.

Besides the above examples, the phenomenon of vortex channelling can also arise from the
presence of grain boundaries in the sample. Historically, the ‘shear’depinning of vortices in grain
boundaries in low Tc materials received considerable attention [26, 27] because it could explain
the quadratic decrease of Jc near Bc2 in practically relevant polycrystalline superconductors.
More recently, the interesting issue of channelling of mixed Abrikosov–Josephson vortices in
grain boundaries in high-Tc materials was addressed in detail by Gurevich [28]. We also mention
the recent interest in channel structures in superconductors as possible ‘fluxon’ rectifiers [29].
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Figure 1. Sketch of the artificial channel geometry. In the grey areas, vortices
are pinned by the strong-pinning NbN layer, while inside the channels pinning
due to material inhomogeneities is negligible. The etched channel width wetched

(of the order of a few row spacings b0) and the effective width w are indicated.

A system in which channel motion and its dependence on the structural properties of
vortex matter can be studied systematically is that of narrow, weak-pinning flow channels in a
superconducting film [30], see figure 1. The samples are fabricated by etching straight channels of
width wetched � 100 nm through the top layer of an a-NbGe/NbN double layer. With a magnetic
field applied perpendicular to the film, vortices penetrate both the strong-pinning NbN in the
channel edges (CEs) and the remaining NbGe weak-pinning channels. The strongly pinned CE
vortices provide confinement to the vortices inside the channel, as well as the pinning (shear)
potential which opposes the Lorentz force from a transport current J applied perpendicular to the
channel. By changing the applied field H , one can tune the commensurability between the VL
constants and the channel width, allowing a detailed study of the shear response and threshold
for plastic flow as a function of the mismatch and the actual microstructure in the channel.

Phenomenologically, plastic flow in the channel occurs when the force density F = JB

(with B/�0 the vortex density) exceeds 2τmax/w, where τmax = Ac66 is the flow stress at the
edge (the factor 2 is due to both CEs) and w is the effective width between the first pinned vortex
rows, defined in figure 1. Thus, the critical force density is given by

Fs = JsB = 2Ac66/w. (1)

The parameter A describes microscopic details of the system: it depends on lattice orientation,
(an)harmonicity of the shear potential, details of the vortex structure in the CEs and the
microstructure of the array inside the channel. Critical current measurements as a function of
the applied field reflected this change in microstructure through oscillations of Fs, shown in
figure 2 for a channel with wetched ≈ 230 nm. Note that in such a narrow channel, the pinning
strength due to intrinsic disorder in the a-NbGe is at the most 10% of Fs (except for B � 50 mT)
and does not affect the oscillations. Since the natural row spacing of the VL is b0 = √

3a0/2,
with a2

0 = 2�0/
√

3B, and in our geometry B � µ0H , one can check that the periodicity of the
oscillations corresponds to transitions from w = nb0 to w = (n ± 1)b0 with n integer, i.e. the
principal lattice vector �a0 is oriented along the channel (figure 1). The envelope curve represents
equation (1) with Brandt’s expression for the VL shear modulus [31]:

c66 = �0Bc2

16πµ0λ2
b(1 − b)2(1 − 0.58b + 0.29b2), (2)
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(b = B/Bc2 is the reduced field and λ is the penetration depth) and a value A = 0.05. This value
for A is close to the value

√
〈u2〉/a0 = 0.047 for the relative displacements at the crossover

from elastic to plastic deformations as obtained from measurements on the peak effect [16, 17].
This led to a qualitative interpretation of the reduction of Fs at minima as being due to defects
in the channel, which develop at incommensurability. However, recent developments [32]–[35]
have shown that (strong) structural disorder may be present in the CE arrays, in which case the
interpretation can drastically differ.

In this paper, we present numerical and analytical studies of the threshold force and dynamics
of vortices in the channel system for various degrees of edge disorder. In an earlier paper [36],
we studied the commensurability effects in the idealized case with periodic arrays in the CEs.
In this situation, Fs at matching (w = nb0) is equal to the ideal lattice strength 2A0c66/w (the
value A0 = 1/(π

√
3) follows from Frenkels considerations [37]), while at mismatch dislocations

develop, leading to A � 0. The resulting series of delta-like peaks in Fs versus matching
parameter differed considerably from the experimental results, which could not be explained
by thermal fluctuations or intrinsic disorder inside the channel. Therefore, we investigated the
effect of positional disorder in the CE arrays on Fs near commensurability (w ≈ nb0) [34]. In this
regime, the behaviour is dominated by the longitudinal displacements of vortices in the chains,
i.e. quasi-1D, and Fs is controlled by defects with Burgers vector along the channel. At weak
disorder, we found a clear reduction of Fs at commensurability caused by nucleation of defects at
threshold, while the existing defects at incommensurability become pinned by disorder, leading
to an increase of Fs in the mismatching case.

The present paper first describes in detail these quasi-1D phenomena near commensurability
and/or for weak disorder. Using a generalized sine-Gordon (s-G) model, we quantitatively
describe how the structure and transport properties depend on the vortex interaction range and
on weak disorder in the CEs. Besides the connection to our system, these results also provide
a background for understanding quasi-1D vortex states and matching effects in artificial PPAs,
including the effects of disorder which these PPAs may contain due to fabrication uncertainties.

The 1D model shows that, above a certain disorder strength, spontaneously (disorder)
induced defects along the CEs dominate over incommensurability induced defects. The
commensurability peak in Fs is then completely smeared out with a value of Fs at matching
(w = nb0) saturating at ∼30% of the ideal lattice strength. In the more general case of wider
channels, the transverse degrees of freedom, especially away from matching (w/b0 � n ± 1/2),
lead to new phenomena: under the influence of disorder, the channel array may split up into
regions with n and n ± 1 rows, involving dislocations with Burgers vector strongly misaligned
with the CEs. At sufficient disorder strength, such dislocations lead to a more effective pinning of
the array than the ‘aligned’dislocations around matching. Fs then exhibits a smooth oscillation as
a function of w/b0, similar to figure 2, with yield strength maxima occurring around mismatch.
This behaviour resembles the classical peak effect, i.e. at mismatch, the enhanced ability of
the arrays to sample configuration space allows better adjustment to the random CEs. In the
last part of the paper, we show detailed simulations of both static and dynamical aspects of this
behaviour, including a study of reordering phenomena at large drive. We find an ordering velocity
of the arrays with a channel width dependence similar to that of the threshold force. Using a
modified version of the dynamic ordering theory in [38], it is shown that such a behaviour can
be explained by a reduction of the energy for formation of misaligned defect pairs away from
matching. The numerical results at strong disorder are also in good qualitative agreement with
recent mode-locking (ML) experiments on the channel system [32, 33].
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Figure 2. Data: critical shear force density Fs = JsB, determined using a
velocity criterion v/a0 ≈ 1 MHz, versus applied field for a channel sample with
wetched ≈ 230 nm at T = 1.94 K. Drawn line: equation (1) with A = 0.05, Bc2 =
1.55 T, λ(T ) = 1.13 µm and effective width w = 300 nm.

The outline of the paper is as follows. In section 2 the channel geometry and the simulation
procedure are discussed. The first part of the paper deals with channels having hexagonal, ordered
arrays in the CEs. In section 3 we present the s-G description and numerical results for a single
1D vortex chain in an ordered channel. In section 4 we show how the 1D behaviour extends to
wider channels with multiple rows and ordered CEs. The second part of the paper deals with
disordered channels. Section 5 describes the effects of weak CE disorder on the behaviour of
a 1D chain, both analytically and using numerical simulations. The effects of weak disorder in
wider channels are discussed in section 6. Section 7 describes the static and dynamic properties
of wider channels in the presence of strong disorder, including an analysis of the reordering
phenomena in this situation. A comparison with the dynamic ordering theory, the confrontation
with experiments and a summary of the results are presented in sections 8 and 9.

2. Model and numerical procedure

We consider straight vortices at T = 0 in the geometry as illustrated in figure 3 for the case of
1 row in the channel. The approximation T = 0 is well justified over a considerable range of
experiments (see section 8). The CEs are formed by two semi-infinite static arrays. The distance
between the first vortex rows on both sides of the channel is w + b0, with w the effective channel
width. The vortices are assumed to be fixed by columnar pins in the CEs. The principal axis of the
pinned arrays is along the channel direction x. A relative shift �x is allowed between the arrays.
In figure 3(a) the simplest configuration is shown, where CE vortices form a perfect triangular
lattice. For �x = 0, their coordinates are

rn,m = ([n + frac(m/2)]a0, m[b0 + (w − b0)/2|m|]), (3)

for m �= 0 and frac(m/2) denotes the remainder of m/2.
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(b)(a)

∆x

x

rn,m

m=1
m=2

a0

w+b0

rn,m+dn,m

b0

Figure 3. Channel geometry with pinned vortices in the grey areas. The specific
case of w � b0, i.e. with 1 row in the channel is illustrated. (a) Ordered situation:
the equilibrium positions rn,m of pinned vortices in the CEs are denoted by (◦).
The effective width w and relative shift �x are indicated. (b) Disordered case:
the randomized vortex positions are denoted by (•).

Disorder is incorporated in the model by adding random shifts d to the coordinates of the
ordered arrays:

Rn,m = rn,m + dn,m, (4)

as shown in figure 3(b). The amplitudes of the random shifts are characterized by disorder
parameters �x and �y as follows: transverse relative displacements dy/a0 are chosen
independently from a box distribution [−�y, �y]. The longitudinal shifts dx

n,m are chosen such
that the strain (dn+1 − dn)/a0 along the channel is uniformly distributed in the interval [−�x, �x].
The latter provides a simple way of implementing loss of long-range order along the CEs. For �x

and �y, we study the following specific cases: �x, �y = 0 in sections 3 and 4, �x ≡ �, �y = 0
in section 5 and �x = �y ≡ � in sections 6 and 7.

To study the commensurability effects, the effective width of the channel is varied from
a value w/b0 ∼ 1–10. We assume that the vortex density inside and outside the channel are
the same. The number of vortices in the channel is then given by Nch = (L/a0)(w/b0), with L

the channel length. In a commensurate situation, one has w = pb0 and both the row spacing
and (average) longitudinal vortex spacing in the channel match with the vortex configuration in
the CEs. When w �= nb0 these spacings become different, leading to generation of topological
defects. While this model differs from the experimental case where the applied field drives the
incommensurability, the method offers a simple way of introducing geometrical frustration and
study various (mis)matching configurations.

With a uniform transport current J applied perpendicular to the channel, the equation of
motion for vortex i in the channel reads (in units of N m−1):

γ∂tri = f −
∑
j �=i

∇V(ri − rj) −
∑
n,m

∇V(ri − Rn,m). (5)

V(r) is the vortex–vortex interaction potential, j labels other vortices inside the channel, the
damping parameter γ is given by γ = B�0/ρf with ρf the flux flow resistivity and f = J�0 is
the drive along the channel. For films which are not too thin compared to the penetration depth
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λ and magnetic fields small compared to the upper critical field Bc2, the interaction V(r) is given
by the London potential:

V(r) = U0K0(|r|/λ), (6)

where U0 = �2
0/2πµ0λ

2 and �0 is the flux quantum.
In the simulations, we integrate equation (5) numerically for all vortices in the channel. We

use a Runge–Kutta method with variable time steps such that the maximum vortex displacement
in one iteration was a0/50. Distances were measured in units of a0 (r̄ = r/a0), forces in units of
U0/a0 and time in units of γa2

0/U0. Following [38], the London potential was approximated by

V(r̄) = ln

(
rc

|r̄|
)

+

( |r̄|
rc

)2

− 1

4

( |r̄
rc

)4

− 0.75, (7)

with a cut-off radius rc corresponding to rc � 3λ/a0. We performed most simulations for
rc = 3.33. Periodic boundary conditions in the channel direction were employed. For each
w/b0, we relaxed the system to the ground state for f = 0. We found that this is best achieved
by starting from a uniformly stretched or compressed n or n ± 1 configuration. For an initial
configuration with Nch vortices distributed randomly in the channel, relaxation resulted in
(slightly) metastable structures, even when employing a finite temperature, simulated annealing
method. Some peculiarities associated with such structures are mentioned in sections 4 and 6.
After the f = 0 relaxation, the average velocity versus force (v–f ) curve was recorded by varying
the force stepwise from large fmax → 0 (occasionally f = 0 → fmax → 0 was used to check for
hysteresis). At each force we measured v(f ) = 〈ẋi〉i,t after the temporal variations in v became
<0.5% (ignoring transients by discarding the data within the first 3a0). In addition, at each force
we measured several other quantities, e.g. the temporal evolution of ri and the time-dependent
velocity v(t) = 〈ẋi〉i.

3. Single chain in an ordered channel

The first relevant issue for plastic flow and commensurability effects in the channel is to
understand the influence of periodically organized vortices in the CEs (see figure 3(a)).
The characteristic differences between commensurate and incommensurate behaviour can be
well understood by focusing on a 1D model in which only a single vortex chain is present
in the channel. Therefore, the CEs are assumed to be symmetric with respect to y = 0
(i.e. �x = 0 in figure 3) and only the longitudinal degrees of freedom of the chain are
retained. At commensurability, w = b0, the longitudinal vortex spacing a = a0. For w �= b0, the
average spacing a = �0/(Bw) = a0b0/w does not match with the period a0 in the edges and
interstitials or vacancies developed in the channel. Their density cd is given by cd = |a−1

0 − a−1|
= (1/a0)|1 − (w/b0)|.

3.1. Continuum s-G description

We first consider the interaction of a vortex in the channel with the periodic arrays in the CEs.
As shown in appendix A, when B � 0.2Bc2 and λ � a0 the edge potential arising from this
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interaction is

Vce,0(x, y) = −2U0e−k0(w+b0)/2 cosh(k0y) cos k0x, (8)

where k0 = 2π/a0. For w = b0 and y = 0, the associated sinusoidal force caused by the edge
has an amplitude which we denote by µ:

µ = (4πU0/a0)e
−π

√
3 � U0/(6πa0). (9)

Next we consider a static chain of vortices inside the channel. The chain is most easily described
in terms of a continuous displacement field u(x), representing the deviations of vortices in the
chain with respect to the commensurate positions, i.e. u(ia0) = ui = xi − ia0. The edge force is
then given as fp = −µ sin(k0u). To describe the interaction between vortices within the chain,
we assume that their relative displacements are small, ∂xu 
 1. Then one can use linear elasticity
theory. Taking into account that the interaction range λ > a0, the elastic force at x = ia0 is

fel =
∑

s=ja0>ia0

∂2
sV(s)[u(x + s) + u(x − s) − 2u(x)]. (10)

Using the Fourier transform of V , the force due to a displacement uq(x) = Re(uqeiqx) with wave
vector q is

fel =
∫

dk

2π

U0πk2

√
k2 + λ−2

∑
s>x

2eiks[1 − cos(qs)]u(x). (11)

Recasting this into a sum over reciprocal vectors lk0 ± q and retaining only the l = 0 term, one
obtains the following dispersive elastic modulus of the chain:

κq = U0πλ/a0√
1 + λ2q2

. (12)

For deformations of scale >2πλ, the elastic force is fel = κ0∂
2
xu with a long wavelength stiffness

κ0 = U0π(λ/a0).
The equation of motion for u for a uniformly driven chain is obtained by adding the

driving force f to the edge force and the intra-chain interactions resulting in γ∂tu = f + fp + fel.
Assuming for the moment that the long wavelength description is valid, the evolution of u is
given by the following s-G equation:

γ∂tu = f − µ sin(k0u) + κ0∂
2
xu. (13)

A useful visual representation of equation (13) is an elastic string of stiffness κ0 with transverse
coordinate u(x) in a tilted washboard potential (µ/k0) cos(k0u) − fu.

The s-G equation (13) has been thoroughly studied in different contexts (e.g. [39]–[41]).
In the static case (f = 0), it has the trivial solution u = 0, corresponding to a commensurate
chain, or kinked, incommensurate, solutions in which u(x) periodically jumps by ±a0, each jump
representing a point defect in the channel. In the context of long Josephson junctions (LJJs, [39]),
a kink corresponds to a Josephson vortex where the phase difference across the junction changes
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Figure 4. Drawn lines: the anti-kink solution equation (14) for λ/a0 = 1, 2 and 9
(most extended line). Symbols: numerically obtained displacement field for an
isolated interstitial for the corresponding rc. - - - -, defect shape (18) in the non-
local limit.

by 2π. An isolated defect is represented by the familiar ‘soliton’ solution of the s-G model:

ud(x) = 2a0 arctan [exp(±2π(x − xc)/ ld)]/π, (14)

where xc denotes the centre of the defect and the ± sign denotes a vacancy or interstitial (kink
or anti-kink). The length ld represents the core size of the defect:

ld = 2πa0
√

g, (15)

with g the dimensionless ratio between the chain stiffness and maximum curvature of the pinning
potential:

g = κ0/2πµa0 = 3π(λ/a0), (16)

as follows from equations (9) and (12). For λ/a0 � 1, ld thus considerably exceeds the lattice
spacing. The continuum approach is validated since ∂xud � 2a0/ld 
 1. In figure 4 we have
illustrated the characteristic defect shape (14), along with numerical data from a later section.

The long wavelength limit is only valid when ld considerably exceeds λ. Since ld grows only
as

√
λ/a0, the dispersion in the elastic interactions becomes important beyond a certain value

of λ/a0. This value is estimated by setting λqd = 2πλ/ld = 1 in (12), resulting in λ/a0 � 9, in
which case ld � 54a0.

For a larger interaction range, one employs the following approach, first derived by Gurevich
[28] for mixed Abrikosov–Josephson vortices in grain boundaries. Expression (10) for the elastic
force can be written as an integral fel = ∫

(ds/a0)∂
2
sV(s)u(x + s). For defects on a scale <λ,

only the short distance behaviour of V has to be retained: V(x) = U0K0(x/λ) ≈ −U0 ln(|x/λ|).
Integrating the expression for fel by parts and adding the edge force and the drive, the equation
of motion becomes:

γ∂tu = f − µ sin(k0u) + (U0/a0)

∫ ∞

−∞
ds

∂su

s − x
. (17)
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A static solution of equation (17) for a single defect is [28]

k0u = π + arctan(±2πx/lnl
d ), (18)

with lnl
d = 6π2a0, which is valid when λ > lnl

d . The value for lnl
d is nearly the same as the s-G core

size ld for λ/a0 = 9. This means that upon approaching the non-local regime, the increase of
core size saturates at ∼60a0, while only the tails of the defect are affected according to equation
(18), see figure 4. A more accurate calculation of the onset of the non-local field regime using
Brandt’s field-dependent vortex interaction (appendix A) shows that non-locality is only relevant
for a channel in a superconductor with λ/ξ � 50.

So far, we discussed isolated defects. For finite defect density, the repulsive interaction
between defects of the same ‘sign’ causes a periodic superstructure in the chain. When cd

grows to ∼1/ld , the defects start to overlap significantly. For the (local) s-G model, explicit
solutions for u have been obtained in terms of the Jacobi elliptic functions, for which we refer to
[39, 41]. Recently, also in the non-local limit where lnl

d > λ, the ‘soliton’chain has been described
analytically [28], which we will not repeat here.

3.2. Transport properties

With a uniform drive f , the transport properties strongly depend on the presence and density
of defects in the channel. At commensurability (a = a0, cd = 0), a threshold force fs = µ is
required, above which all vortices start moving uniformly. Their velocity is identical to that of
an overdamped particle in a sinusoidal potential: v = √

f 2 − µ2 [42]. The threshold µ coincides
with the well-known relation between shear strength and shear modulus of an ideal lattice by
Frenkel [37]: for a harmonic shear interaction, a value A = A0 = a0/(2πb0) = 1/π

√
3 is applied

in equation (1). Identifying Fsa0b0 = fs = µ for w = b0, one finds:

c66 = π
√

3µ/(2a0) = U0/(8a0b0), (19)

which coincides with the familiar expression for the shear modulus in the London limit:
c66 = �0B/(16πµ0λ

2). In appendix A we generalize the expression for the ordered channel
potential to higher field and show that in that case also the potential is harmonic and that A = A0

holds for a commensurate channel.
At incommensurability, depinning of the chain is governed by the threshold force to move

a defect. In the present continuum approach, such a threshold is absent. However, taking
into account the discreteness of the chain, in which case equation (13) turns into a Frenkel–
Kontorova (FK) model [36], a finite Peierls–Nabarro (PN) barrier exists to move a defect over
one lattice spacing (see e.g. [41]). The magnitude of the PN barrier has been studied for a
variety of cases, including FK models with anharmonic and/or long-range interactions [41, 43].
For g < 1, fPN can amount to a considerable fraction of µ. Additionally, in this regime,
anharmonicity may renormalize g [41, 43] and cause pronounced differences between the
properties of kinks (vacancies) and antikinks (interstitials). In our limit g � 1, where ∂xu 
 1
and harmonic elastic theory applies, these differences are small and the pinning force vanishes
as fPN = 32π2gµ exp (−π2√g). Hence, defects in an ordered channel give rise to an essentially
vanishing plastic depinning current Js.6

6 Practically, discreteness effects can be neglected for g � 2. One can then also consider the regime λ/a0 � 1.
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Considering the dynamics, for small drive f < µ, the motion of defects, each carrying a
flux quantum, provides the flux transport through the channel. When defects are well separated,
for cd < l−1

d , the mobility of the chain is drastically reduced compared to free flux flow and the
average velocity v is proportional to the defect density: v = cdvda0. Here vd is the velocity of
an isolated defect at small drive. It can be calculated from the general requirement that the input
power must equal the average dissipation rate:

fv = γ〈(∂tu)2〉L,t = (γ/ ld)

∫ ld

(∂tu)2 dx. (20)

The last step arises from the space and time periodicity of u. Using ∂tu = vd∂xu and the kink
shape equation (14), one obtains the ‘flux flow resistivity’ at small defect density:

dv

df
= cda0(π

2√g/2γ), (21)

where π2√g/2γ = Md is the kink mobility in the s-G model [40]. For larger defect density,
where defects start to overlap, this relation changes. The linear response for f � µ may then be
obtained from the solutions for u based on elliptic integrals [28, 39, 41].

For larger drive f � µ, the ‘tilt’-induced reduction of the (washboard) edge potential
becomes important. This leads to an expansion of the cores of the sliding defects and causes
a nonlinear upturn in the v–f curves. Exact solutions of equation (13) describing this behaviour
do not exist. Therefore, we use a perturbative method similar to that in [22, 44] which is able
to describe the full v–f curve over a wide range of defect densities. It is convenient to define
the displacements h(x, t) = u(x, t) − s(x, t), where s(x, t) = (q/k0)x + vt, with (q/k0) = cda0,
is the continuous field describing the displacements of an undeformed incommensurate chain
(i.e. straight misoriented string in the washboard potential) moving with velocity v. In terms of
h, the equation of motion (13) and equation (20) can be written as

γv(1 + ∂sh) = f + µ sin(k0h + qx + k0vt) + κ(q/k0)
2∂2

sh, (22)

f = γv + (γv/a0)

∫ a0

(∂sh)2ds. (23)

The last term in equation (23) describes additional dissipation due to internal degrees of freedom
in the chain. Under the influence of the potential, h acquires modulations with period 1/cd in
x, i.e. period a0 in s. These modulations are then expressed as a Fourier series of modes with
wavelength 1/(mcd) (m an integer � 1) and amplitude hm:

h(x, t) =
∑

m

hm exp [imk0s] + c.c. (24)

The reduced stiffness is g = V ′′(x = a0)/V ′′
ce,0 where V ′′(x = a0) � (U0/λ

2)
√

πλ/(2x)e−x/λ(1 + λ/x) and V ′′
ce is

obtained from the full (λ-dependent) expression for Vce,0 in appendix A (equations (A.3) and (A.4)). The result
is that the continuum approach is valid for λ/a0 � 0.3. For the frequently occurring geometry of a vortex chain
confined by vortices pinned in a square array, one can also estimate the continuum regime. In this case one replaces
(w + b0)/2 in equation (8) by a0/2, yielding a periodic pinning force with µ� � 10 µ. Correspondingly, g� � λ/a0

and lattice discreteness is unimportant for λ/a0 � 2.
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Figure 5. v–f characteristics for ordered vortex channels with w ≈ b0 and
�x = 0. Symbols are simulation results, drawn lines are obtained with
equation (25). The inset shows an expanded view of the small velocity regime.

The overlap of defects and the core expansion for f � µ appears in the q and v dependence of
h. Both effects cause a reduction of the relative displacements h. An approximate solution for
h(v) is obtained by substituting equation (24) into equation (13), yielding the coefficients hm

(details of the solution are deferred to appendix B). The v–f relation equation (23) attains the
form:

f = γv

[
1 +

ω2
p

2[ω2
0 + ω2

r ]

]
. (25)

The additional ‘friction’ force is represented in terms of the pinning frequency ωp = µk0/γ , the
washboard frequency ω0 = k0v and ωr = K2

eff (cd)/γ which is the effective relaxation frequency
for nonlinear deformations associated with a defect density cd = q/(2π), with K2

eff (cd) given in
appendix B. At small v, the elastic relaxation time 1/ωr for the chain to relax is much smaller
than the timescale 1/ω0 between passage of maxima in the edge potential. This corresponds
to the linear sliding response of the static structure of (overlapping) defects. For large v,
1/ωr � 1/ω0 meaning that the incommensurate chain is not given enough time to deform. This
leads to expanded defects described by a sinusoidal variation of h with reduced amplitude (see
appendix B). The v–f curve then approaches free flux flow according to f − γv ∼ v−1 as for a
single particle.

Recently, exact solutions describing the nonlinear dynamics and core expansion of mixed
Abrikosov–Josephson vortices based on the nonlocal equation (17) have been derived in [28]. The
resulting transport curves are very similar to those obtained from equation (25), see figure 5. We
also note the similarity with the I–V curves obtained from a model for kinked Josepson strings
[45] in high-Tc superconductors with the field under an angle with respect to the insulating
layers.
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Figure 6. Displacements u(x) along the channel for w = 0.97b0: (◦) numerical
result for f = 0 also representing a snapshot of the moving chain at low drive,
f = 0.01. The thick drawn line shows the result for u as calculated from
the Fourier modes given in appendix B. (•) Displacement field for v = 0.09
(f = 0.1). The data mask a drawn line which is obtained from equation (B.8)
in appendix B. The straight drawn line shows the displacement field s(x) in the
absence of the periodic potential.

3.3. Numerical results

The simulations of symmetric channels (�x = 0) for w ∼ b0 fully support the above findings.
The interaction with the CEs for w = b0 provides a maximum restoring force with a value
0.054, independent of the interaction cut-off rc used in the numerics. This value is in agreement
with the dimensionless values for µ and c66 in equations (9) and (19): a0µ/U0 = 1/(6π) and
c66a

2
0/U0 = 1/(4

√
3)).

The data points in figure 4 show the displacement field of a single defect (obtained by
adding one vortex to a commensurate chain) for three values of the cut-off rc (i.e. various λ/a0).
We conclude that up to rc = 30 (λ/a0 = 9), the s-G kink shape equation (14) forms a good
description of a defect in the chain.

The data points in figure 5 show numerical results for the transport of a single chain in
channels of various widths and rc = 3.33. The features discussed previously, i.e. the vanishing
PN barrier and nonlinear transport, clearly appear in the data for incommensurate chains. We
also plotted the results according to equation (25), with K2

eff (cd) evaluated using the results in
appendix B for λ/a0 = 1 and taking into account that µ slightly depends on w. The analytical
treatment gives a very reasonable description of the data. Finally, we show in figure 6 the
numerical results and analytical results of appendix B for the quasi-static and dynamic shape
of the chain for w/b0 = 0.97 (cd = 0.03/a0). The numerical results closely mimic the analytic
results, both for the kinked shape at small v and the core expansion with the associated reduction
of h for large v.

To conclude this section we mention that, at incommensurability, due to the vanishing
barrier for defect motion, the average velocity 〈ẋi(t)〉i has a vanishing ac-component. Only
at commensurability, the washboard modulation is retained, the velocity at large drive being
〈v(t)〉 = v + (µ/γ) sin(ω0t).
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to bottom. The dotted lines represent equation (28) for n = 9.

4. Ordered CEs and multiple chains

We now turn to the results for channels containing multiple vortex rows and ordered CEs. The
simulations are performed with the full 2D degrees of freedom and rc = 3.33. We implemented
an edge shift �x(w) with a saw tooth shape (0 � �x � a0/2). This ensures that, as we vary w,
a perfect hexagonal structure is retained for w = pb0 with p an integer. However, for w �= pb0,
the qualitative behaviour did not depend on �x.

Figure 7 shows v–f curves of commensurate channels, w/b0 = n with integer n � 2. In
these cases the arrays are perfectly crystalline and have a shear strength fs = µb0/w, inversely
proportional to the channel width and in accord with equation (1) with A = A0 = 1/π

√
3. This

is consistent with the fact that only the first mobile chains within a distance ∼b0 from both CEs
experience the periodic edge potential (see equation (A.3)) while the other chains provide an
additional pulling force via the elastic interaction. This interaction brings an additional feature to
the dynamics, namely shear waves (see also [46]). The shear displacements of rows n in the bulk
of the channel can be described in continuum form, un(t) → u(y, t), by the following equation
of motion:

γ∂tu(y, t) = f + c66a0b0∂
2
yu(y, t). (26)

At large v the CE interaction can be represented by oscillating boundary conditions. As shown
in appendix C, this causes an oscillatory velocity component dh/dt with y-dependent amplitude
and phase describing periodic lagging or advancing of chains with respect to each other:

∂th(y, t) ∼ −f(y) sin(ω0t) − g(y) cos(ω0t). (27)

Here ω0 is the washboard frequency k0v, f(y) = cos(y/ l⊥,v) cosh(y/ l⊥,v) and g(y) =
sin(y/ l⊥,v) sinh(y/ l⊥,v). The length scale l⊥,v = √

(µ/γv)b0 explicitly depends on v and
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Figure 8. Delauney triangulation of the static structure for two incommensurate
channels: w/b0 = 3.92 and 3.52. Open circles and filled squares denote 7- and
5-fold coordinated points, respectively. The construction for the Burgers vector
is shown for w/b0 = 3.92; the drawn lines for w/b0 = 3.52 mark the TSFs.

represents the distance over which the amplitude and phase difference decay away from the
CEs. Although, in principle, equation (27) is valid only for γv/µ � 0.25, it provides useful
qualitative insight into the dynamics at all velocities: at small velocity, l⊥,v is large, meaning
that for all rows the velocity modulation and phase become similar. Hence, for v → 0 the array
may be described as a single vortex chain, which is the underlying origin of the fact that close
to threshold the curves approach the 1D commensurate behaviour v = √

f 2 − f 2
s with reduced

threshold fs = µ/n. At large velocity, l⊥,v eventually becomes less than the row spacing. In that
limit only the two chains closest to the CE experience a significant modulation. In appendix C
we quantitatively analyse the friction force in this regime with the result:

f − γv = µ2

2n(2γv + µ)
. (28)

In the inset of figure 7, this behaviour is displayed for n = 9 by the dotted line. In the high-
velocity regime, the result agrees well with the numerical data, at lower velocities equation (28)
underestimates the true friction.

Next we discuss the behaviour of incommensurate channels. The static vortex configuration
for a channel of width w/b0 = 3.92 is shown in the upper part of figure 8. A Delauney
triangulation shows that the array consists of four rows with two pairs of 5-, 7-fold coordinated
vortices at the CE constituting two misfit dislocations of opposite Burgers vector �b and glide
planes along x. Due to their mutual attraction, dislocations at the upper and lower CE are
situated along a line with an angle of ∼60◦ with �x. The two edge dislocations thus form a
‘transverse’ stacking fault (TSF). In the lower part of figure 8, the structure for a channel with
w/b0 = 3.52 is shown. Here the density of stacks, given by cTSF = |(1/a0) − (1/a)|, is enhanced.
The dislocations at one side of the CE repel each other and are equally spaced, like the periodic
superstructure for a single chain in figure 6. The slight misalignement between the ‘upper’ and
‘lower’ dislocations of a pair is due to the relative shift between the CEs: the exact orientation of
the pairs is determined by the choice of �x. For channel widths in the regime n < w/b0 � n + 1/2
with integer n, we find very similar structures but instead of TSFs consisting of vacancies, we
now have TSFs consisting of interstitial vortices, again arranged in a periodic superstructure.
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Figure 10. The mobility per stack MTSF = (dv/df )/cstack versus w/b0. The
drawn line shows the predicted form equation (29) for λ/a0 = 1.

Figure 9 shows the transport curves associated with these structures. As for the single chain,
the presence of misfit defects causes an essentially vanishing threshold force. For a small drive,
f < µb0/w, a low-mobility regime occurs associated with glide of the edge dislocation pairs
along the CE. This allows for the elastic motion of a complete TSF, i.e. the vortices in the ‘bulk’
of the channel remain 6-fold coordinated.

It is interesting to study how the mobility due to the TSFs changes on increasing the number
of rows. In figure 10 we plot the mobility per stack, MTSF = (dv/df )f→0/cTSF versus channel
width. MTSF around each peak decreases with increasing cTSF . This is caused by overlap of
the strain fields of the defects, in analogy with the behaviour for a single chain. The overall
increase of the peak value of MTSF is related to a change in the size of an isolated TSF.
An extension of the analysis in section 3 allows to describe this change quantitatively. For
small n, the longitudinal deformations do not vary strongly over the channel width. This can
be understood by considering shear and compression deformations related by the equation
κ∂2

xux + c66a0b0∂
2
yux = 0. It follows that a longitudinal deformation on a scale l‖ along the channel
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Figure 11. Threshold force versus w/b0 for ordered channels. The dashed line
represents Frenkels prediction for an ideal lattice in the continuum limit.

varies over a scale l⊥ = l‖
√

c66a0b0/κ perpendicular to the channel. In the case l⊥ � w, the
transverse variation of ux(y) is small and can be neglected so that κ0 in equation (13) can be
replaced by an effective stiffness nκ0 due to n rows. Similarly, the driving force is replaced
by f → nf . This results in the same equation (13) with a rescaled edge force µ → µ/n.
Accordingly, the longitudinal size of a defect (TSF) is given by lTSF = 2πa0

√
ng and the mobility

of an isolated TSF by (compare Md below equation (21)):

MTSF � π2√ng/2γ. (29)

As shown by the drawn line in figure 10, this form gives a reasonable description of the data up to
n = 3.Working out the condition l⊥ � w given above for the validity of equation (29), one obtains
w � (ld/2)

√
c66a0b0/κ � 3b0, in agreement with the data. At larger n, ‘bulk-mediated’elasticity

[47] leads to decay of the longitudinal deformations towards the channel centre. We also note
that, due to the increase of lTSF with n, the density cTSF for which defects are non-overlapping,
decreases on increasing n.

In the v–f curves of figure 9, we observe at larger velocity, features very similar to the
transport of the 1D chain: for f � µ/n, the effective barrier is reduced, leading to core expansion
of the TSFs. Accordingly, the curves approach free flux flow behaviour. As in the commensurate
case, this approach is initially slower than f − γv ∼ 1/v due to additional oscillating shear
deformations in the channel for f � µ/n.

Figure 11 summarizes the behaviour of the shear force fs, taken at a velocity criterion
v ≈ 0.01µ/γ , versus the matching parameter. At integer w/b0 = n, the threshold is fs = µ/n,
but we note that it can be reduced due to a finite edge shift �x. At mismatch, fs is essentially
vanishing. Near ‘half filling’, w/b0 � n ± 1/2, where the arrays switch from n to n ± 1 chains, a
small enhancement of fs is observed. In this regime, the static (f = 0) structure was obtained by
annealing from a random initial configuration, attempting to determine the exact switching point.
This results in metastable structures with coexisting n and n ± 1 row regions (or longitudinal
stacking faults, LSFs) bordered by dislocations with misoriented Burgers vector, see [36]. The
increase in fs is caused by the finite barrier for climb-like motion of these dislocations, by which
an LSF can move as ‘giant’ defect through the channel. For sufficiently large drive, (part of )
the LSFs are annealed which may result in hysteresis for up/down cycled v–f curves. We will
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discuss these ‘mixed’ n and n ± 1 structures in more detail in sections 6 and 7 in the context of
disordered CEs. We also note that the integer chain structures with TSFs away from half filling
differ from the results in [36]. The structures there, obtained from a random initial configuration,
contained point defects unequally distributed among rows, yielding ‘gliding’ dislocations within
the channel. Such structures are also slightly metastable but the conclusion of vanishing fs for
incommensurate, integer chain structures, drawn in [36], remains unaltered.

5. Single chain in a disordered channel

We will now consider the influence of disorder in the CE arrays on transport in the channels,
focusing in this section on the characteristics of a single chain for w/b0 ∼ 1 with only longitudinal
degrees of freedom. The CE disorder is implemented with longitudinal random shifts as described
in section 2. We note that both CEs remain ‘in phase’; the effect of quenched phase slips or
dislocations between the CEs will be treated in the discussion in section 8.

5.1. Disordered s-G equation

First we consider the form of the channel potential in the presence of a weak disorder. To that
end we generalize equation (A.1) in appendix A and express the CE potential at r0 = (x, y = 0)

in terms of the vortex density ρe in the CEs:

Vce(r0) = (2π)−2

∫
dk V(k)ρe(k)eik·r0, (30)

with ρe(k) the Fourier transform of ρe. For weak disorder (∇ · d 
 1), this density can be
expressed in terms of the displacement field d in the CE as follows [48]: ρe(re, d) � (B/�0)(1 −
∇ · d + δρe), where δρe = ∑

i cos [Ki(re − d(re))] represents the microscopic modulation due to
the lattice (Ki spans the reciprocal lattice) while ∇ · d reflects density modulations. As described
in appendix D, this decomposition of ρe leads to two contributions to the potential:
Vce = Vl(x) + Vp(x)

= − (B/�0)

∫
dreV(r0 − re)∇ · d(re) − [µ + δµ(x)] cos [k0(x − d)]/k0, (31)

where in the second term δµ(x)/µ = π
√

3∂xd. The term Vl represents long-range potential
fluctuations and is smooth on the scale ∼a0. Its correlator 
l(s) = 〈Vl(x)Vl(x + s)〉 is derived in
appendix D. Assuming that ∂xd has short-range correlations (on the scale ∼ a0/2) and a variance
〈(∂xd)2〉 = �2/3 as in the simulations, 
l can be written as


l(s) � Cα�
2U2

0 (λ/a0)
1+αe−(s/λ)2

. (32)

The exponent α and the prefactor Cα depend on the disorder correlations between rows in the edge:
α = 2 when the strain ∂xd(x) is identical for all rows and α = 1 when the strain is uncorrelated
between rows. The term Vp in equation (31) is the quasi-periodic potential arising from δρe of
the vortex rows nearest to the CEs. The amplitude fluctuations δµ/k0 are characterized by (see
appendix D):


a(s) = 〈δµ(x)δµ(x + s)〉x

k2
0

� (µ�a0/2)2e−(2s/a0)
2
. (33)
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To obtain the energy of the vortex chain and the equation of motion, the vortex density
inside the channel, ρc, is decomposed similar to ρe: ρc(x, u) = a−1

0 [1 − ∂xu + δρc(x, u)], where
u is the displacement field of the chain. As shown in appendix D, in the limit λ > a0,
the resulting interaction with the CEs can be written as H = HSG + Ha + Hs where HSG =
a−1

0

∫
dx [(κ0/2)(∂xu)2 − (µ/k0) cos(k0u)] represents the s-G functional for an ordered channel,

and Ha, Hs are the disorder contributions due to amplitude fluctuations and random coupling to
the strain:

Ha = −
∫

dx

a0

δµ(x)

k0
cos(k0u) and Hs = −

∫
dx

a0
Vs(x)∂xu. (34)

The term Vs(x) = Vl(x) − κ0∂x d(x) contains contributions from local and non-local strains. The
latter dominates for λ > a0 (see appendix D). Hence 
s(s) = 〈Vs(x)Vs(x + s)〉 � 
l(s).

The model described by H = HSG + Ha + Hs is also used to describe LJJs or commensurate
CDWs with weak disorder, however with different disorder correlations. In the former case, the
term Ha in equation (34) describes local variations in the junction critical currents [49, 50]. For
CDWs, a disorder contribution of the form Ha arises from the so-called backward scattering
impurities, while the term Hs originates from ‘forward’ scattering impurities [51]. We also note
that our model differs from the usual Fukuyama–Lee–Rice model for CDWs [52], in which
commensurability is ignored either due to strong direct random coupling to u (δµ(x) � µ) or
due to large mismatch.

In principle, the equation of motion for the chain is given by γ∂tu = −δH/δu. However,
it has been shown in previous studies [47], [53]–[55] that in the moving state a convective
term −γv∂xu should be included. While irrelevant for the depinning process, such a term can
be important for the dynamics, and for completeness we include it.7 The resulting equation of
motion is

γ∂tu = f + κ0∂
2
xu − [µ + δµ(x)] sin(k0u) − ∂xVs − γv∂xu. (35)

In writing (35) we have assumed, for simplicity, that the elastic deformations in the presence
of disorder can be described by the long-wavelength stiffness κ0. Ignoring the last term, (35)
describes the transverse displacements u(x) of an elastic string in a tilted ‘washboard’ potential
with random amplitude µ(x)/k0 and random phase φ(x) = − ∫ x

−∞ dx′ Vs(x
′)/κ0. The latter

represents a u-independent random deformation of the chain.

5.2. Numerical results

The influence of disorder on the threshold force and the dynamics of the chain are directly visible
in numerical simulations. The simulations were performed using rc = 3.33a0 and channels of
length L � 1000a0.

Figure 12 shows several v–f curves for channels with 0.93 < w/b0 < 1.1 at a disorder
strength � = 0.025. We first focus on the result for the commensurate case w = b0. The disorder
leads to a significant reduction of the threshold fs with respect to the pure value µ = 0.054. The
reduction is enhanced on increasing �, as shown for � = 0.05 in the inset. The origin of the

7 The consecutive term −γv∂xu � −f∂xu arises naturally when realizing that the driving force density on a ‘string’
segment is the product of f and the average vortex density ∼(1 − ∂xu), see also [47].

New Journal of Physics 7 (2005) 71 (http://www.njp.org/)

http://www.njp.org/


21 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

0.00
0.00

0.05

10
−2

 v

1.10
w/b0

1.02
1.00
0.97
0.95
0.93

0.10

0.05

3

2

1

∆=0.05

f

v

0.10

f
0.04 0.05

Figure 12. v–f curves of a commensurate chain and various incommensurate
chains for weak disorder � = 0.025. Inset: v–f curve of a commensurate channel
for � = 0.05.

reduction is that disorder lowers the energy barrier for the formation of vacancy/interstitial
(kink/antikink) pairs in the chain. Figure 13(a) shows the time evolution of the displacements
ui = xi − ia0 upon a sudden increase of f to a value f = 0.049 > fs at t1. For t < t1, u is ‘flat’
and the 2D crystal formed by the chain and the CEs is topologically ordered.At t = t1, the motion
starts at an unstable site (atx/a0 � 500) by nucleation of a vacancy/interstitial pair visible as steps
of±a0 inu.We henceforth denote the force at which this local nucleation occurs byfn.The defects
are driven apart by the applied force and when their spacing becomes ∼ld , a new pair nucleates at
the same site. This process occurs periodically with rate Rn, leading to the formation of a domain
with defect density cd = Rn/〈vd〉 and a net velocity v = cd〈vd〉a0 = Rna0 with 〈vd〉 the average
defect velocity. In the present case of weak disorder, 〈vd〉 is essentially the same as for � = 0.
For a further increase of the force to f = 0.053, an increase of the nucleation rate is observed.
In [34] we showed that in larger systems, coarsening occurs in the initial stage of depinning
due to a distribution of unstable sites. However, after sufficiently long times, the stationary state
consists of one domain around the site with the largest nucleation rate (smallest local threshold
f min

n ) with vacancies travelling to the left and interstitials to the right. It is interesting to compare
this to a study of CDWs with competing disorder and commensurability pinning [53]. Using a
coarse-grained version of equation (35), it was found in [53] that in the pinning dominated, low-
velocity regime, the so-called interface width W(L) =

√
〈(u(x) − 〈u〉)2〉x grows linearly with

the system size L. The mechanism of defect nucleation, which we observe naturally, explains
this phenomenon. In addition, we found that, at depinning, the average velocity v = Rmax

n a0

can be described by Rmax
n ∝ (f − f min

n )β with a depinning exponent β = 0.46 ± 0.04, similar as
previously reported for 1D periodic media [56].

The defective flow profile does not persist up to an arbitrary large force. In the commensurate
v–f curve in figure 12 and its inset, a small kink, is observed for f � µ. Associated with
this kink we find a transition to a much more ordered state. We have illustrated the temporal
evolution of vortex displacements in this state in figure 13(b) for f = 0.08. The ‘staircase’
structure has vanished and the relative vortex displacements are greatly reduced. In fact, in the
above-mentioned study [53], a very similar transition in the CDW dynamics was found, and was
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Figure 13. (a) Evolution of longitudinal displacements ui(t) for the
commensurate chain in figure 12 (� = 0.025), plotted for clarity in a transverse
way versus x. At t = t1 the force is increased above threshold. (b) Stationary
evolution of ui(t) for large drive (f = 0.08) showing the motion over a distance
∼1.8a0 (the t and u axis have arbitrary offset, and a few frames around t = 10
were omitted for clarity).

shown to be of first order. We leave the precise dependence of this transition on disorder and
vortex interactions in our channels for future studies.

We now turn to the incommensurate case. The v–f curves with w �= b0 in figure 12 all
exhibit a finite threshold instead of the vanishing threshold for the incommensurate channels
without disorder (figure 5). With disorder, the defects that are present in the channel, couple to
the disorder in the CE, which causes a pinning barrier fd . This barrier has a distribution along
the channel {fd} and maximum value f max

d . We now focus on the curves with small defect
density cd � 1/ld for which the defects are individually pinned. In this regime, the threshold
force fs satisfies fs � f max

d .
The precise threshold behaviour depends on the distribution of barriers {fd}, similar to

those for LJJ and CDW systems [49]. As an illustration, we show in figure 14(a) the evolution
of displacements for a channel with w/b0 = 0.99 for a force just above threshold f(t > 0) > fs.
The static configuration at t = 0 (f < fs) shows that the disorder breaks the periodicity of
the ‘soliton’ chain. For t > 0, depinning starts with the defect at x � 270a0 and proceeds via
a ‘collision-release’ process between the moving defect and its pinned neighbour. Thus, for
f � fs strong local variations in the defect mobility exist and the overall chain velocity depends
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Figure 14. (a) Evolution of displacements for w/b0 = 0.99 and f = 0.013 > fs

for t > 0. Defects at x ≈ 50a0, x ≈ 150a0 and x ≈ 325a0 are initially pinned
while the others are mobile.A defect collision-release process occurs at x ≈ 150a0

and t ≈ 1500. (b) Evolution of displacements when f is suddenly increased to
f = 0.048. Nucleation is observed for x ≈ 500a0.

strongly on the distribution {fd} (of which we show an example below). However, as seen in
the v–f curves in figure 12, for f � 2f max

d these effects vanish and the mobility approaches
dv/df � cda0Md , with Md the defect mobility without disorder. Another feature in the v–f

curves for small defect densities is the velocity upturn at a force f � f min
n < µ. It is caused

by nucleation of new defect pairs in the incommensurate chain. The start of such a process is
illustrated in figure 14(b): at x � 500a0 the chain is unstable against pair nucleation and the
nucleated interstitials/vacancies are formed ‘on top of’ the moving incommensurate structure.
This process only occurs at small defect densities when the time between passage of existing
defects, �1/(vdcd), exceeds the nucleation time R−1

n . For f � µ, the structure of both defects
disappears again. The resulting dynamic state resembles that of the large velocity profile shown
in figure 6, but with additional ‘roughness’ due to the weak CE disorder.

The v–f curves in figure 12 at w/b0 = 0.93 and w/b0 = 1.1, for which the defect density
in the chain is larger, exhibit a smaller threshold force. In this regime the interaction between
defects starts to become important and fs is determined by collective pinning of the defects. This
situation was studied analytically for the case of Josephson vortices in a disordered LJJ in [50].
We will not consider this situation explicitly but we note here that, as the disorder and the typical
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pinning force on the defects increases, the onset of the collective pinning regime shifts to larger
defect density, where defect interactions are stronger [50].

In figure 15 we show the dependence of fs on channel width, both for the weak-disorder
regime treated above and for larger disorder. The data at � = 0.025 exhibit a sharp peak at
w = b0, reflecting the gap between minimum nucleation threshold and maximum defect pinning
force. Larger disorder however rapidly smears the peak, being eventually completely suppressed
for � � 0.15. The origin of this behaviour is a spontaneous nucleation of defects in the static
chain at larger disorder. This is conveniently illustrated via the changes in the distribution of
the individual defect pinning force {fd} and that of the nucleation threshold {fn} for increasing
disorder strength, shown in figure 16. The data were obtained by simulating hundreds of short
channels (L = 100a0) both with one vacancy, yielding {fd}, and without ‘geometric’ defects,
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i for � = 0.15 and

f < fs � 0.0165 at commensurability w = b0. Upper panel: evolution of
displacements at depinning, f = 0.017. The time increment between consecutive
snapshots is �t = 10 and for clarity each snapshot has been shifted up by a0.

yielding {fn}. While for � = 0.025, the distributions are separated (formally, in infinite systems,
such separation only exist for bounded disorder, see the next section), for larger disorder they start
to overlap and they become nearly identical for � = 0.075. This implies that nucleated defect
pairs at w = b0 can remain pinned, while at incommensurability defects may be nucleated before
the ‘geometrical’ defects are released. In other words, regardless of the matching condition, the
static configuration contains both kinks and antikinks.

While for bounded disorder, static defects first appear at a disorder strength defined as �c, the
complete collapse of the peak in fs is associated with the presence of a finite density of disorder-
induced defects, of the order of the inverse kinkwidth ∼l−1

d . We define the disorder strength at
which this occurs as �∗, here �∗ � 0.15. An example of the displacement fields for this disorder
strength is shown in figure 17 for w = b0. The lower panel shows the displacements for f � fs,
relative to the displacements in the CE. Clearly, the static configuration has numerous defects. In
general, the approach to the critical pinned state occurs by avalanches in which local nucleation
and repinning, i.e. non-persisting nucleation events, drive the rearrangements. The upper panel
displays the evolution of displacements above threshold, revealing a growth of ‘mountains’ due
to persistent nucleation, superimposed on a disordered background.

The effect of large disorder on the shape of the v–f curves is shown in the inset to
figure 15. All curves now exhibit essentially a linear behaviour,8 except in a small regime

8 A detailed study of the v–f curves at strong disorder showed that the friction force f −γv exhibited, besides
the usual decrease on increasing v above threshold, a shallow minimum and then a weak increase when further
increasing v. These features did not depend on system size or simulation time step and varied little with
commensurability. The observed behaviour is in marked contrast with analytical and numerical studies in standard
CDW models, which find a correction f −γv ∝ v−1/2 at large velocity for a 1D system, see [57]. The difference
could arise from the additional u independent random force or the remaining (relatively small) commensurability
pinning which are present in our system, but absent in the previous studies. This issue deserves further investigation.
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just above fs. We note also that, in this disordered regime, a gradual transition to a smoother
displacement field occurs at larger forces, similar to the dynamic transition found for CDWs.
Going back to figure 15, we should also mention the overall asymmetry of fs with respect
to w/b0 = 1 and the slight decrease of fs on increasing w/b0 at large disorder. These
effects are unrelated to the competition between commensurability pinning and disorder
discussed so far, but simply reflect the overall decrease of the edge potential for larger
width.

5.3. Analysis of pinning forces and crossover to strong disorder

Using the results of section 5.1, we now analyse in more detail the dependence of the pinning
force on disorder and the vortex interaction range. We focus on the average pinning strength of
isolated defects, which we derive here in a semi-quantitative fashion (the formal calculation is
deferred to appendix D). Our analysis applies to the case of weak disorder, i.e. we assume that
the defect shape is unaffected by disorder [50]. Extrapolation to larger disorder provides a useful
estimate for the crossover value �∗ at which the commensurability peak vanishes. We conclude
the section with a summary of previous results [34] for the threshold forces f min

n and f max
d in the

special case of bounded disorder.
The disorder correction equation (34) to the energy of the vortex chain consists of a term Ha,

due to amplitude fluctuations in the periodic potential, and a term Hs, due to random coupling
to the strain. We first evaluate the typical pinning energy of a defect

√〈E2
a〉 due to the amplitude

fluctuations. The local fluctuations are assumed to be uncorrelated on a length scale a0, and
have a variance 〈(δµ/k0)

2〉. Hence, for a defect in the chain, which extends over a range ld , the
resulting random potential has a variance 〈E2

a〉 � 〈(δµ/k0)
2〉(ld/a0) � µ2�2lda0/4. The typical

pinning force on a defect is then given by
√〈E2

a〉/ld which reduces to

√
〈f 2

a 〉 � 0.2µ�g−1/4. (36)

The typical pinning energy
√〈E2

s 〉 of a defect due to the term Hs in equation (34) is
estimated in a similar way: the mean-squared energy due to coupling of a single fluctuation
in Vs to the strain of a defect is ∼
s(0)(rd/a0)

2(2a0/ld)
2, where rd is the range of 
s,

given below equation (34), and a0/ld represents the strain. On the scale of a defect, there
are ld/rd such fluctuations. Thus the associated random potential for a defect has a variance
〈E2

s 〉 ∼ 
s(0)(rd/a0)
2(a0/ld)

2(ld/rd). Taking 
s(0) � 
l(0) and using equation (32), in which
case rd = λ, yields 〈E2

s 〉 � 2Cα(U0�λ)2(λ/a0)
α/(lda0) (the factor 2 comes from the refined

calculation in appendix D) The typical pinning force
√〈E2

s 〉/ld due to random coupling to the
strain is then given by√

〈f 2
s 〉 �

√
3Cαµ�(g/3π)

2+α
2 g−3/4. (37)

The ratio between the two characteristic defect energies is
√〈E2

s 〉/
√〈E2

a〉 � 8
√

Cα(λ/a0)
α+1

2 ,
which shows that, particularly for increasing λ/a0, the dominant pinning is due to random
coupling to the strain. Henceforth we use only this contribution. We next estimate the disorder
strength where the commensurability peak vanishes. As mentioned before, this collapse occurs
when the density of disorder-induced defects becomes ∼ l−1

d , in other words, when the typical
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energy gain of a defect due to disorder becomes of the same magnitude as its bare elastic energy∫
(dx/a0)(κ0/2)(∂xu)2 � µa0

√
g. This leads to �∗ ∝ C−1/2

α g−(2α+1)/4. For the particular case of
random strains that are identical for all rows (α = 2), �∗ is given by

�∗ � 3g−5/4. (38)

This can be compared to the numerical data in figure 15. Even though those results were obtained
for λ/a0 = 1 (g = 3π), formally outside the regime of validity of our analysis, the predicted value
�∗ � 0.18 is in reasonable agreement with the data.

In the particular case of bounded random strains in the CEs, the distribution of the nucleation
force {fn} at commensurability is bounded from below by f min

n and that of the defect pinning
force {fd} is bounded from above by f max

d (at weak disorder). For completeness we give here the
previously derived results [34] for these extremal values: both occur due to disorder fluctuations
on the same length scale as that on which the displacement field u(x) varies. For a defect, this
naturally corresponds to ld . The associated maximum defect pinning force is f max

d /µ ∝ �g3/2

(for uniform strains [34]). For nucleation, at f � µ, the appropriate length scale is lsan, the extent
of a so-called small amplitude nucleus [40]. Due to the nonlinearity of the pinning force, lsan

itself depends on the force, i.e. lsan(f ) > ld and it diverges for f → µ. As shown in detail in
[34], this leads to a minimum nucleation threshold given by 1 − (f min

n /µ) ∝ [g3/2�]4/3. From
the condition f max

d = f min
n , one then obtains the disorder strength �c at which pinned defects

can first appear spontaneously in the system: �c � g−3/2 < �∗.

6. Wide channels with weak disorder

We now consider how channels of larger width, in which vortices have the 2D degrees of freedom,
behave in the presence of weak-edge disorder. Close to commensurability, the effects we find are
similar to that for a single chain. However, around ‘half filling’ the importance of the transverse
degrees of freedom of the channel vortices become apparent.

6.1. Behaviour near commensurability

For the commensurate case, w/b0 = n, weak CE disorder causes a reduction of the threshold
with respect to the ideal value f 0

s = µ/n, see the data in figure 18. The reduction originates
from defect formation at threshold, as illustrated for w = 3b0 in figure 19. Three snapshots of
the displacements of individual rows inside the channel are displayed in figure 19(a). The first
snapshot is for f < fs � 0.7f 0

s and yields the ‘flat’ profile. The subsequent snapshots for f > fs

reveal simultaneous nucleation and motion of a pair of ‘oppositely charged’TSFs, each terminated
at the CEs by a pair of edge dislocations (see figure 19(b)). The macroscopic, stationary motion
of the array is governed by periodic repetition of this process at the least stable nucleation site. In
figure 19(c), we show the vortex trajectories during nucleation of the TSF shown in figure 19(a)
and (b). Very similar images were obtained in decoration experiments at the initial stage of VL
depinning in NbSe2 [11], implying that even for weakly disordered VLs, defects may nucleate at
depinning (see also [12]). We also note that in simulations of a rapidly moving 2D VL [58], the
same nucleation mechanism as in figure 19, but relative to the co-moving frame, was identified
as source of velocity differences between chains.

For incommensurate channels close to commensurability, the TSFs which are caused by
the mismatch are pinned by the disorder. For the weak disorder strengths considered here, the

New Journal of Physics 7 (2005) 71 (http://www.njp.org/)

http://www.njp.org/


28 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

0.00
0.00

0.01

0.02
v

0.03

0.01 0.02
f

0.03

3.48
v=f/γ

3.3
3.06
3.03

w/b0

3

Figure 18. v–f curves for weak disorder (� = 0.05) and several channel widths.
The arrow indicates the yield strength fs = µ/3 for w/b0 = 3 and no disorder.
All data are computed for channel lengths L > 400a0.

50 60x /a0

(b)

ui,3

u i,2

u i,1

(a)

0 100 x/a0

a0

a0

(c)

Figure 19. (a) Time evolution of longitudinal displacements ui,j of individual
rows j = 1, 2 and 3 at depinning for w/b0 = 3 and � = 0.05. (b) Square lattice
representation of the nucleated stacks of discommensurations. Small arrows
indicate the Burgers vector of the dislocations terminating each stack. The
large arrows indicate their propagation directions. (c) Vortex trajectories during
nucleation of the vacancy stack between x = 40a0 and x = 65a0 (up to the time
corresponding to the filled symbols in (a)).

random stress from the CEs is not sufficient to break up the TSFs. Consequently, at zero drive the
array in the channel consists of a weakly disordered superlattice of TSFs. The behaviour of the
transport curves is shown in figure 18 for w/b0 = 3.03 and 3.06. It reveals features very similar
to the curves of a single chain (figure 12). For fs � f � µ/n, a low-mobility regime in the v–f
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Figure 20. Critical force versus channel width for a disorder strength � = 0.05
using a velocity criterion v ≈ 0.01µ/γ . The dashed line represents the continuum
result fs = µb0/w.

curves develops due to the motion of the TSFs. Here fs corresponds either to the rms pinning
force of individual TSFs or to the collective pinning force for larger stack density. For forces
f > µ/n, the curves approach linear flow behaviour again.

6.2. Behaviour around ‘half filling’

The dependence of fs on the channel width for � = 0.05 is shown in figure 20 for two
disorder realizations. For larger channel widths, smaller channel lengths were used with
L � 1000/(w/b0). The data around matching (w/b0 � n) reflect the nucleation and pinning
of TSFs as discussed above: fs at commensurability is reduced compared to the pure value µ/n

and the commensurability peak is considerably broadened, particularly for larger n, due to the
pinning of TSFs. The apparent discontinuity in the peak may be an artefact of the finite channel
length (see the discussion in section 5.2 on the distribution of nucleation sites). A new, and
robust feature, however, is that around ‘half filling’ distinct maxima in fs appear. The origin of
these maxima is illustrated by the static structure for w/b0 = 3.48 in figure 21. The triangulation
shows that, in addition to aligned dislocations with �b ‖ �x, also misaligned dislocations appear
with Burgers vector at an angle of about ±60◦ with the CEs. These misaligned defects are locally
stabilized by the disorder in the CEs and thus also pinned by the disorder which leads to the
increase in the threshold force. In addition, the projection of the driving force along the glide
direction is always smaller for misaligned dislocations than for aligned dislocations. It is seen
that the misaligned dislocations separate regions with n rows from regions with n ± 1 rows.
Either of these regions may thus be considered as an LSF. In section 4 we mentioned that in the
absence of disorder, LSFs are metastable, the structure with a single integer number of rows and
a regular distribution of TSFs is energetically somewhat more favourable. In presence of weak
disorder, however, LSFs are stable and have the lowest energy.

As for the dynamics at f > fs, the dislocation structure and flow pattern are generally
different from the static pattern of LSFs. We illustrate this in figure 22 where the vortex
trajectories at various (increasing) driving forces are shown. For small drive (figure 22(a),
f � 0.25µ/(w/b0)), a region of plastic motion within the channel is seen at about the location
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Figure 21. Triangulation of the static ground state structure for w/b0 = 3.48 and
� = 0.05. The arrows indicate the Burgers vectors of the dislocations. Shown is
a characteristic segment of the total channel length L = 500a0.

(a) f=0.0038

(c) f=0.0209

(d) f=0.0419

160 170x / a0

(b) f=0.0101

Figure 22. Vortex trajectories for the channel segment shown in figure 21
(w/b0 = 3.48, � = 0.05) during motion over ∼ 4a0 at (a) f = 0.0038, (b)
f = 0.0101, (c) f = 0.0209 and (d) f = 0.0419.

where the static pattern shows a four-row structure. Vortex transport through these fault zones
occurs by repeated nucleation and annihilation of misaligned defects. At a fixed driving force,
an LSF remains at the same position, although its boundaries fluctuate over a distance of at most
2 − 3a0. This contrasts the situation in the absence of disorder where LSFs can move along the
channel via a ‘climb’-like process (see [36]).

For different driving forces, the location and amount of either n or n±1-row regions or
fault zones is different, as shown in figure 22(b)–(d). In this particular segment, the n = 4 region
expands on increasing the drive but at other locations the reverse can occur. Moreover, after
cycling the force, a different structure can occur at the same drive, i.e. no unique structure exists
at a given force. This may also lead to small hysteresis in the v–f curves. Overall, we see that
the transverse degrees of freedom in the channel, in combination with disorder, give rise to an
important new mechanism of yield strength enhancement. In the following section, we analyse
these structures in more detail in the context of strong disorder.
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(a) w/b0=3

(b) w/b0=3.5

(c) w/b0=4

Figure 23. Delauney triangulation of the ground state structure at � = 0.2 for
(a) w/b0 = 3, (b) w/b0 = 3.5 and (c) w/b0 = 4. The arrows in (a) indicate the
Burgers vectors of the dislocations. The aligned dislocations in (a) and (c) include
a disorder-induced static dislocation pair (twisted bond) at the lower CE, in
(b) numerous misaligned dislocations are present.

7. Wide channels with strong disorder

The behaviour of fs versus w/b0 in figure 20 still exhibits considerable discrepancies with the
experimental data in figure 2. Clearly, the CE disorder underlying these experimental data9 differs
from the type of weak CE disorder considered so far. Motivated by recent imaging experiments
[35], which showed glassy vortex configurations in the NbN edge material, we now consider
the case of strong CE disorder. As will be shown, in this regime the effect of transverse degrees
of freedom and the presence of misaligned defects provide the main mechanism for the critical
current oscillations.

The simulations we discuss here in detail were performed at a large disorder strength
� = 0.2. The only remaining order in the CE arrays is their preferred orientation with the
principle lattice vector along the CEs. The system sizes were typically such that wL � 1500a0b0.
We also allowed for quenched defects between the two CEs (uncorrelated longitudinal strains in
the upper and lower CE arrays), but at these large disorder strengths this is not essential.

7.1. Static structures, yield strength and depinning

In figure 23 we show triangulations of the static vortex configuration for channels of width
w/b0 = 3, 3.5 and 4. As seen in figures 23(a) and (c), even in the matching case, dislocations are
present due to the large random stresses from the CE. While some of these may originate from
quenched ‘phase slips’between upper and lower CEs, we checked that, also without these ‘phase
slips’, the matching structure at this disorder strength always exhibits twisted bonds (defined by

9 The data in figure 2 have been taken in a ‘field down’ experiment. Qualitatively similar data were obtained in
‘field-cooled’ experiments and both data can be interpreted in terms of strong edge disorder. The results of ‘field
up’ measurements, however, are qualitatively different and indicate much weaker CE disorder in this case, see [59].
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Figure 24. The ‘correlation’length 〈L‖〉 (◦) and the fraction Ltot
‖ /L (•) of regions

with n = 3 rows versus w/b0.

two adjacent dislocations of opposite charge) at the CEs as well as oppositely ‘charged’ TSFs
terminated by defect pairs at the CE. While most defects are thus situated along the CE with
�b ‖ �x, occasionally they can be located inside the channel and have misoriented Burgers vector.
Turning to the mismatch case in (b), it is seen that a region of four rows (left) coexists with a
three-row region (right). In between these regions, there must be dislocations with misaligned
Burgers vectors. In addition, numerous other misaligned defects are visible, rendering local
destruction of the chain alignment with the CEs (although less frequent, the latter can also occur
in the matching state, see figure 23(c)).

To further characterize the disorder in the f = 0 structures, we analysed, for the regime
2.5 < w/b0 < 3.5, the average length of domains without misaligned dislocations, 〈L‖〉, as well
as the total fraction, Ltot

‖ /L, of regions with n = 3 rows. The results are shown in figure 24.
As observed, both quantities are maximum at w/b0 = 3 and decay considerably away from
matching: for |w/b0 − 3| > 0.3 the average length of ‘correlated’ n = 3 regions in the static
structure is no more than 10a0 and they make up less than ∼50% of the channel. The remaining
fraction 1 − (Ltot

|| /L) contains misaligned dislocations and small regions with 2 (w/b0 � 2.5)
or 4 (for w/b0 � 3.5) aligned chains.

In figure 25 we show the behaviour of the threshold force for � = 0.2. The modulation of fs

with channel width is still present but it has changed considerably compared to the weak disorder
case. The sharp maxima at integer w/b0 have vanished, very similar to the case of the 1D chain
at strong disorder, see figure 15. Instead, we now observe smooth oscillations, with maxima
in fs for w/b0 � n + 0.65 and minima for w/b0 � n + 0.15. The maxima, although occurring
slightly above ‘half filling’, are of similar nature as the local maxima at w/b0 � n ± 1/2 for
weak disorder: they are related to numerous misaligned defects present in the structure around
mismatch. They enhance the flow stress compared to that of the structures around matching with
predominantly aligned defects.

The differences in threshold force are also reflected by the vortex trajectories at small
velocity. In figure 26 we show these trajectories for channel widths w/b0 = 3.1, 3.6 and 4.1,
close to the extrema in fs. The first thing to notice is that the trajectories at mismatch (figure
26(b), w/b0 = 3.6) are densely interconnecting, on a scale ∼a0, i.e. the motion is fully plastic
and creation and annihilation of misaligned defects occurs over nearly the full channel length.
For the ‘near matching’ cases in (a) and (c), the motion occurs mainly in the form of integer
chains. However, for the small velocity considered here, the dynamics still exhibits a considerable
amount of plastic motion. This partly occurs due to vortices which remain stuck at the CEs (also
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Figure 25. Computed threshold force versus channel width for strong disorder,
� = 0.2. The data were obtained by taking the friction force f − γv at a velocity
criterion v � 0.025(µ/γ) and subsequent averaging and smoothing over five
disorder realizations. Drawn line: continuum result, fs = µ/(w/b0).

(a)

(b)

(c)

370 380x/a0 390

Figure 26. Vortex trajectories at small velocity v � 0.001 for (a) w/b0 =3.1
(f =0.0053 � 0.1µ), (b) w/b0 =3.6 (f =0.0074 � 0.14µ) and (c) w/b0 =4.1
(f = 0.0044 � 0.08µ), all during motion over ∼3a0.

visible in (b)) and partly due to narrow interconnecting regions. In fact, comparing the average
length of the regions without inter-row switching in (a) with the data for the static structure
in figure 24, it is seen that near matching the structure at small v is more disordered than the
corresponding static structure, reflecting nucleation of misaligned defects in regions which were
free of such defects at f = 0.

7.2. Analysis of dynamical properties

We now consider in more detail the properties of the moving structures at f > fs. We first show
in figure 27(a) two characteristic v–f curves associated with a minimum (w/b0 = 3.1) and a
maximum (w/b0 = 3.6) in flow stress. It is observed that the enhanced threshold in the latter
case also translates in a larger dynamic friction, f − γv, of the driven structure. In addition,
the latter curve exhibits a small positive curvature in the small-velocity regime v � 0.01. This
nonlinearity is related to the strong plastic nature of the motion in this regime.
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Figure 27. (a) v–f curves around a minimum in flow stress w/b0 = 3.1 (◦), and
around a maximum w/b0 = 3.6 (•). Inset: Wx(xM) and Wy(xM) for w/b0 =
3.6 and f = 0.021. The dashed line emphasizes the linear behaviour of Wy

in the regime 3a0 < xM < 10a0. (b) The density of switching points ρ1D
sw ≡

�Wy/(�xMa2
0) versus force for w/b0 = 3.1 (◦) and w/b0 = 3.6 (•). Inset:

Wx(xM) and Wy(xM) for w/b0 = 3.1 and f = 0.041. The arrow indicates the
value Wy,c referred to in the text.

A convenient way to characterize the amount of plasticity is to calculate the mean-squared
displacement of vortices from their centre-of-mass (M) positions [60]:

Wα(t) =
∑

i

[αi(t + t0) − αi(t0)]
2/Nch, (39)

where α = x − xM, y − yM denote longitudinal and transverse displacements, respectively. As
shown by Kolton et al [60] for a ‘bulk’ 2D VL, Wα(t) can be characterized by Wα = Rαt

ξα . For
example, when ξy = 1 we have normal transverse diffusion (caused by ‘random’ switching of
vortices between chains) with Ry = Dy the diffusion coefficient. However, in the channels Wy

will become bounded at long times (large xM) due to the finite channel width. In the inset (i) to
figure 27(a), we have illustrated this behaviour for w/b0 = 3.6 and f = 0.021. For xM � 15a0

(the point xM = 0 was chosen in the steady state after transients had disappeared), Wy increases
linearly as in usual diffusion, but for larger displacements (times) Wy levels off and eventually
saturates. In addition, even when all vortices remain in their chain (no transverse diffusion), Wy

initially increases to a value Wy,c due to finite chain ‘roughness’. Such a behaviour is observed for
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xM � 2a0 in the inset (ii) to figure 27(b), where Wy is shown for a more coherent flow situation
at w/b0 = 3.1 and f = 0.041. In practice, we found that Wy,c is always reached for xM < 3a0,
while for the long time (large distance) behaviour significant levelling of Wy occurs only when
xM � 10a0. The appropriate regime used to characterize real diffusion is therefore given by
3a0 < xM < 10a0 (i.e. �xM = 7a0). Further, Dy itself does not directly reflect the density of
chain-switching points along the channel. Defining the 1D density of such switching points
as ρ1D

sw � Nsw/L, the rate of switching increases linearly both with ρ1D
sw and with the average

velocity: t−1
sw � ρ1D

swv. Hence, the diffusion constant is given by Dy � a2
0/tsw = ρ1D

swva2
0. Being

interested in ρ1D
sw , we therefore divide out the intrinsic velocity dependence of Dy and calculate

Wy(t)/(vta
2
0) = �Wy/(�xMa2

0) ≡ ρ1D
sw .

The results of ρ1D
sw versus f are shown in figure 27(b) for the two cases w/b0 = 3.1 and 3.6.

Around the minimum in flow stress (◦), the overall value of ρ1D
sw is considerably smaller than

around the maximum (•), similar to what is seen in the trajectories in figure 26. For both cases,
ρ1D

sw is clearly reduced on increasing the force. This reflects both a decrease in the number of
fault zones in the moving structure as well as a suppression of switch events (called ‘transverse
freezing’ in [60]) within regions already organized in n moving rows. Around matching, ρ1D

sw

smoothly vanishes at f ∼ µ ≈ 0.05,10 indicating complete dynamic ordering into an n = 3 row
structure without transverse wandering. For w/b0 = 3.6, an ordering transition is also observed
but it occurs at much larger drive (f ∼ 3µ, results not shown) and the array orders into an n = 4
row configuration, with a reduced spacing b < b0 between the chains and average vortex spacing
a > a0 within the chains. At the end of this section, we will show how in this large-drive regime
the number of rows changes with w/b0.

The insets to figure 27 also show the longitudinal mean-squared displacements. For strongly
plastic flow at mismatch (inset (i)), Wx is large and ξx is close to 2, as expected when some vortices
remain stuck at the CEs. For the more coherent situation in (ii), where transverse switching has
nearly ceased, Wx is smaller and ξx � 1. We always find an exponent 1 < ξx < 2, similar to
the results for 2D VLs in [60]. Interestingly, even without transverse wandering (ρ1D

sw = 0), Wx

increases indefinitely (with ξ � 1), indicating that the moving integer chain structure still exhibits
slip events and (local) velocity differences between the chains.

We illustrate some more aspects of the structures at large drive in figure 28, where the vortex
trajectories and triangulations of a single snapshot are displayed for w/b0 = 3.1 and 3.55, both
at f � 2µ. For w/b0 = 3.1, we do not see any transverse wandering in figure 28(a). Figure 28(b)
shows that in this case the dynamic structure exhibits only dislocations with �b ‖ �x, mainly located
at the CE but also occasionally between chains inside the channel. The latter dislocations are
possibly dynamically nucleated. They are non-stationary in the co-moving frame [58, 61] and
lead to slip events and the growth of Wx as was discussed above. Turning to the mismatch case
(figures 28(c) and (d)), it is seen that the dynamic structure consists of n = 3 and n = 4 row
regions coexisting in the channel. At the driving force considered here, ρ1D

sw has a finite but small
value a0ρ

1D
sw � 0.007, which is solely due to switching of vortices in the fault zones separating

the 3 and 4-row regions. Within these regions transverse wandering is absent. At yet larger
forces the minority 3-row regions vanish and complete ordering into four rows occurs, as for the

10 The decay of ρ1D
sw (f) is approximately exponential, regardless of (mis)match, but generally shows a small

discontinuous jump to zero at large velocity where a0ρ
1D
sw < 0.001. However, the exact force or velocity at which

this jump occurs and the value of a0ρ
1D
sw at the jump showed considerable scatter for different disorder realizations

or when varying the system size. For practical purposes we therefore study the ordering transition defined through
two specific criteria for a0ρ

1D
sw > 0.001.

New Journal of Physics 7 (2005) 71 (http://www.njp.org/)

http://www.njp.org/


36 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

(d)

(c)

(a)

(b)

Figure 28. (a) Flow trajectories at large drive (a) during motion over ∼3a0

for w/b0 = 3.1 and f � 2µ. (b) Delauney triangulation of one snapshot of (a).
(c) Trajectories for w/b0 =3.55 and f �2µ. (d) Triangulation of a snapshot of (c).

case w/b0 = 3.6. For a given driving force, the n-row regions again remain quasi-static during
motion. The triangulation in (d) exhibits the expected misaligned dislocations at the fault zone
but in general also aligned dislocations are present between the chains within an n-row region
(not shown in the figure).

It is also interesting to compare the velocities in the two coexisting regions with n and
n ± 1 rows. Denoting the vortex velocity in an n-row region by vn and the longitudinal vortex
spacing there by an, flux conservation implies that nvn/an = n′vn′/an′ . We checked that, in
both regions, the average flux density 1/(anbn), with bn = w/n the row spacing, was equal to
1/(a0b0) within ∼4%. Therefore, an′ = (n′/n)an and consequently the average vortex velocities
are equal, vn = vn′ . However, the local washboard frequency, νn = vn/an, is different in both
regions. Indeed, the spectrum of the velocity fluctuations in channels with dynamic coexistence
of n and n ± 1 rows showed two shallow fundamental peaks at frequencies νn/νn′ = n′/n. We
however note that, both around matching (where a single peak occurs at ν ∼ v/a0) and around
mismatch, the amplitude of the washboard peak(s) decays on increasing the channel length L.
In addition, for large velocities, the mixed n/n ± 1 structures ultimately anneal into a single n

or n ± 1 domain, causing the collapse of one of the peaks.
The simulations also allow to explicitly show the influence of the transverse degrees of

freedom on the modulations of the dynamic friction force (and, ultimately, the critical current).
Generalizing the expression for the friction force equation (20) in section 3.2 including transverse
fluctuations leads to

f = (γ/v)[〈(∂tux)
2〉i,t + 〈(∂tuy)

2〉i,t] = γv + f x
fric + f

y

fric

≡ γv + ffric, (40)

where f x
fric and f

y

fric denote the contribution to the total friction due to longitudinal and transverse
fluctuations, respectively. Figure 29(a) displays the numerical results for these quantities,
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Figure 29. (a) The contributions f x
fric/ffric (•) and f

y

fric/ffric (◦) to the dynamic
friction versus w/b0 for a velocity v = 0.1µ/γ . (b) Total friction f − γv at
v = 0.1µ/γ . (c) Ordering velocity vc,1 (•) determined from a criterion a0ρ

1D
sw �

0.01, and vc,2 (◦) using a criterion a0ρ
1D
sw � 0.002 (error bars were estimated

from different disorder realizations). (d) Number of moving rows n at large drive
(v � vc,2) versus w/b0.

normalized by the total friction force f − γv as obtained from the v–f curves. The sum of
the two data is 1 as it should be, confirming the correct numerical evaluation of these quantities.
The total friction is also shown for clarity (figure 29(b)) and is essentially the same as the data
shown in figure 25. Clearly, the relative contribution of longitudinal fluctuations to ffric decreases
on approaching a mismatch situation, while f

y

fric/ffric increases accordingly. These qualitative
features remain present also at larger velocities, where permeation modes between chains are
being suppressed.

Finally, we consider the continuous modulation of structural (dis)order in the moving arrays
when varying the channel width. As was shown in figure 27(b), for a fixed velocity, the density
of switching points ρ1D

sw is maximum around mismatch while for fixed channel width it decreases
with velocity. We can then define an ordering velocity vc operationally as the point at which
ρ1D

sw is reduced below a certain threshold. In figure 29(c) the behaviour of vc for channel widths
w/b0 > 2 is shown for two criteria. The lower curve (vc,1), with a0ρ

1D
sw ≈ 0.01, corresponds to

a situation with ∼70% of the channel length ‘transversely frozen’ into integer chain regions of
length �10a0. The upper curve (vc,2), with a0ρ

1D
sw ≈ 0.002, corresponds to nearly fully annealed

arrays. As observed, vc,1 increases smoothly by about an order of magnitude between a matching
and mismatching situation, while vc,2 increases by a factor �5 (except for w/b0 > 5). Regardless
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Figure 30. Comparison between the experimentally measured yield strength of
an artificial flow channel and the numerical results at strong disorder, represented
through the parameter A (see the text) normalized by the value A0 = (π

√
3)−1

for the ideal lattice.

of the criterion, the amplitude of the modulation of vc is considerably larger than the amplitude
of the fs modulation, which we will further discuss shortly.

For v � vc,2 the arrays all completely anneal into a singlen-row structure without permeation
modes. Figure 29(d) displays the number of rows n of these structures versus w/b0. The switching
from n to n + 1 rows is seen to occur at half integer channel widths for w/b0 > 3 but the transitions
1 → 2 and 2 → 3 take place below these points, at w/b0 � 1.35 and w/b0 � 2.4, respectively.
Around the transition points, there are regions in which n and n ± 1 rows coexist at smaller
velocity v � vc,2. The widths of these regions were found to be �w/b0 = ±0.05.

8. Discussion

The results for fs versus w/b0 at strong disorder, in the previous section, show strong resemblance
to the measurements of the critical current versus field B in the experimental channel system, (see
figure 2). For a more detailed comparison, we combine both data in figure 30, represented in terms
of the parameter A (see section 1): for the experiment, Aexp is determined from Aexp = Fsw/(2c66)

and is plotted versus B1/2, for the simulations, A = (fs/µ)(w/b0)A
0.11 As observed, the shapes

of the oscillations are in very reasonable agreement, although the overall value of A from the
numerics is larger than the experimental value.12 The important conclusion from the simulations

11 For the numerical data, fs was obtained from a criterion γv/µ ≈ 0.025, i.e. γva0/U0 ≈ 0.001, while in the
experiments a criterion v/a0 = 1 MHz was used for the critical current. The latter corresponds to a dimensionless
criterion (v/a0)(γa2

0/U0) � (v/a0)(20πµ0λ
2Bc2/(

√
3Bρ0)), where ρf � 0.2Bρ0/Bc2 was used, with ρ0 the normal

resistivity and Bc2 the upper critical field. Taking λ = 1.1µm, B � 0.012(w/b0)
2 T for the channel system

under investigation, Bc2 = 1.55 T and ρ0 = 2 µ� m, yields (v/a0)(γa2
0/U0) � 3.4 × 10−9(v/a0)/(w/b0)

2 = 3.4 ×
10−3/(w/b0)

2. Occasional checks using the latter criterion however yielded results for fs and A/A0 essentially the
same as in figures 25 and 30.
12 There are several possible explanations for the discrepancy between Aexp and the numerical result for A. The
experimental system consists of channels with walls of finite height at the CEs. Screening currents along these walls
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here is thus that the maxima in the measured critical current do not correspond to traditional
commensurability peaks, but are caused by enhanced plastic motion and transverse deviations in
mismatching channels with strong edge disorder. Previously, we indeed obtained experimental
evidence for this mechanism via Introduce at first occurrence ML experiments [32] in which an
rf-drive is superimposed on the dc-drive (see also [63]). Interference between the former and
collective modes of deformation in the moving array leads to plateaux in the current–voltage
curves. The plateau (ML) voltage then directly yields the number of moving rows n and transitions
from n → n ± 1 rows were observed to coincide with maxima in critical current.13

More detailed ML experiments provided a wealth of additional information on the dynamics
of the arrays [33]. In particular, a minimum velocity was required to observe the ML phenomenon,
which we identified as ordering velocity. This ordering velocity exhibited a strong upturn away
from matching, similar to the behaviour of vc in the simulations. As proposed in [33], vc can
be estimated from a modified version of the dynamic ordering theory of Koshelev and Vinokur
(KV) [38]. Firstly, instead of the 2D random potential in [38], for the channels vc is related to
the short-range-correlated random stress from the CE, with rms amplitude ∼εcec66 and εce the
random strain. Secondly, when thermal fluctuations can be ignored compared to typical defect
energies (see below), vc is inversely proportional to the energy kBTp for creation of small defect
pairs (see also [65]): vc/a � √

3/32π(a0/a)2(εcec66)
2a0b0/(γkBT̄p), with kBT̄p � Apc66a

2
0/2π

(per unit vortex length). The typical pairs referred to are those with misaligned Burgers vector,
which are responsible for breakup of the chain structure. Hence, the increase in vc away from
matching implies a decrease in the pair formation energy, which is accounted for by including
the parameter Ap � 1 in kBT̄p, while setting Ap ≡ 1 at matching. Experimentally, Ap decreased
to ∼0.1 at mismatch. The behaviour of vc and Ap in the simulations is analysed using the
dimensionless form of the above formula for vc:

(γvc/µ) � 2.5ε2
ce(a0/a)/Ap. (41)

The data for vc,1 around matching (where Ap = 1) yield as measure for the random strain
εce � 0.19 and, near mismatch, a reduction of the defect pair-creation energy by a factor
Ap � 0.1. The latter is in very reasonable agreement with the experiments, and the reduction
of kBTp near mismatch also qualitatively agrees with the large number of disorder-induced fault
zones observed in the static structures near mismatch (figure 23). However, the result for εce is
considerably larger than the value εce = 0.025 found experimentally. This is also manifest in
the fact that in the experiments the pinning frequency, defined as fs/(γa), always exceeds the
ordering frequency vc/a, while in the simulations fs � γvc.

Within the modified KV theory, the pinning frequency and the ordering frequency
are directly related via [33]: vc/a = τ(fs/γa)2 with τ = (ε2

ce/2A2)(wB)2/(Apc66ρf ).

may cause the average distance between the first mobile row and the first pinned rows to be larger than that in the
simulation (where it is b0 at matching), leading to an overall reduced value of the shear interaction. In addition, the
precise amount of disorder in the experimental system is unknown (imaging studies only exist on related geometries
and outside the relevant field regime, see [62]. Further, differences in the amount of longitudinal and transverse
positional disorder may exist. Finally, compared to the experiments, the simulations were performed for relatively
small ratio λ/a0.
13 In the experiments we found that the switching point n → n ± 1 together with the maxima and minima in Js can
be shifted to different magnetic fields by changing the field history. This implies a non-trivial relation between the
effective width w and the physical channel width wetched , depending on the amount of screening currents along the
channel walls, see [64].
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Experimentally, τ was found to be independent of the matching condition. The decrease in
the defect pair creation energy (∝Ap) then relates to the increase in the pinning frequency (yield
strength) away from matching (∝A) as Ap ∝ 1/A2. The numerical results for Ap versus A behave
similarly and can be fitted by Ap ∝ 1/Aς with ς ∼ 2–3, but data collected over the full range of
w/b0 show too much scatter to make a more detailed comparison. Nevertheless, the KV model
qualitatively accounts for the enhanced amplitude of the vc modulation compared to that of the
yield strength.

As for the discrepancy between the experimental and numerical values for εce or vc, one
should keep in mind that experimentally the ordering velocity is determined from the onset of
an n-row ML plateau, i.e. it corresponds to the velocity at which coherent n-row regions first
appear, while incoherent regions may still exist in other parts of the channel. In the simulations,
this may thus correspond to vc determined using a larger criterion for the density of switching
points ρ1D

sw . In addition, the superimposed rf-drive in the experiments may assist reordering of
the structure, also leading to smaller values of vc. For future studies it is interesting to directly
compare numerical simulations of channels with mixed rf–dc drive with the experiments and
test which criterion best represents the reordering phenomenon.

Additionally, the experimental results indicated that in the large-drive regime (where the
ML amplitude saturates at a constant value), the coherently moving fraction of vortices does
not exceed ∼40% (at matching), while it was reduced on approaching mismatch. This feature
appears at odds with the simulations, where eventually the arrays all order into a completely
transversely frozen n-row domain at large drive, regardless of the matching condition. At present
we do not have a good explanation for this discrepancy.

Finally, we comment on the T = 0 approximation made throughout this study.When thermal
fluctuations are important, not only does one expect the dynamic ordering behaviour to be
changed (see [38, 66]), also the sharp threshold behaviour in the v–f curves will be smeared and
activated flow may occur. The relevant energy scale for both phenomena is again the energy for
formation of small defect pairs kBTp. In the low-magnetic field experiments in [33], this energy
was ∼2 orders of magnitude larger than kBT and on comparison with these results the T = 0
approximation was justified. To compare with the experiments near the melting field in [66], it
would be required to include thermal fluctuations in the simulations.

9. Summary

We have presented a detailed study of the properties of vortices confined to narrow flow
channels with pinned vortices in the CEs. In the experimental system which motivated this work
[30, 32, 33], the threshold force (yield strength) shows pronounced commensurability oscillations
when the natural vortex row spacing is varied through integer fractions of the channel width.
The analysis and simulations presented in this paper show that in a mesoscopic channel system,
the dependence of threshold on commensurability as well as the dynamics of vortices in the
channels drastically vary with the amount of disorder in the confining arrays. At zero or weak
disorder, the system behaves similar to 1D LJJ systems and defects at the CEs reduce the yield
strength. At large disorder, the behaviour involves transitions from quasi-1D to 2D structures,
where an increase in the amount of plastic deformations enhances the yield strength similar to
the situation in the classical peak effect in superconductors.

We first presented a generalized s-G description for a 1D vortex chain in an ideally
ordered channel. In this case (or for channels with multiple chains near commensurability),
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the threshold force has sharp peaks at commensurate widths, whereas it is essentially vanishing
at incommensurability due to easy glide of ‘aligned’ defects, i.e. defects with Burgers vector
along the CE. The model was then extended to study the effects of weak disorder in the confining
arrays. Simulations and analytical results showed that this disorder causes the sharp maxima in
the threshold force at matching to be lowered and broadened due to nucleation (at matching) and
pinning (at mismatch) of edge defects. Apart from these defects, the arrays respond elastically
in this regime, both near threshold and at large drive. We studied numerically the relevant edge-
defect dynamics and, using the s-G model, we analysed the crossover to strong defect pinning
on increasing the disorder strength.

For large disorder in the CEs, matching between the longitudinal vortex spacings inside
and outside the channel becomes irrelevant and the peaks in threshold force around matching
completely vanish with a ‘saturated’value for fs of about 30% of the ideal lattice strength.Around
mismatch however, the arrays become susceptible to the formation of defects with Burgers vector
misoriented with the channel direction. Such defects either locally break up the integer chain
structure or exist at the boundaries of n and n ± 1-row regions, coexisting in the channel. At large
disorder, they are strongly pinned and cause the threshold force to exceed that around matching.
Approaching a matching condition, the density of misaligned defects is reduced and a smooth
modulation of fs results, with minima near matching. The depinning transition always involves
plastic deformations inside the channel, but the amount of plasticity drastically increases away
from matching. Using the density of transverse switching points (obtained from the transverse
diffusion in the moving structures) as dynamic ‘order parameter’, we study the evolution of the
moving structures by changing the channel width and the drive. The arrays reorder (partially)
into transversely frozen n-row regions at a velocity vc that shows a similar modulation with
commensurability as the threshold force. Finally, we compared the modulations of fs and vc at
strong disorder with the available experimental results and with the dynamic ordering theory in
[38] and found good qualitative agreement.
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Appendix A. Ordered channel for arbitrary field

In this appendix we calculate the edge potential and s-G parameters in a symmetric, ordered
channel with w � b0 for arbitrary field. The interaction between a vortex at r = (x, y) in the
channel and the pinned vortices in the CEs at Rn,m is given by

Vce(r) = (2π)−2

∫
dk

∑
n,m

V(k)eik·(r−Rn,m), (A.1)

where V(k) is the Fourier transform of the vortex–vortex interaction. To obtain an expression
valid over a range of fields larger than the (low field) London-regime, we use a generalization
of the London potential equation (6) as proposed by Brandt [31]. This generalization accounts
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for the reduction of superfluid density with field and an additional attractive interaction due to
overlapping vortex cores. The Fourier transform of this interaction reads:

V(k) = 2πU0(1 − b)

[
1

|k|2 + λ′−2
− 1

|k|2 + ξ′−2

]
, (A.2)

where b = B/Bc2, λ′ = λ/(1 − b)1/2 and ξ′ = ξ C

(2−2b)1/2 the effective coherence length with C∼1.
It is convenient to split equation (A.1) for the total potential in terms of the contribution Vm of
row m (see figure 3). Integrating over ky and using Poisson summation yields

Vm(r) =
∑

l

|V l
m(y)| cos lk0(x − ma0/2), (A.3)

where k0 = 2π/a0 and the prefactors are

|V l
m(y)| = k0U0(1 − b)

[
e−lk0,λ′ |y′

m|

lk0,λ′
− e−lk0,ξ′ |y′

m|

lk0,ξ′

]
(A.4)

with lk0,λ′ =
√

(lk0)2 + (λ′)−2, lk0,ξ′ =
√

(lk0)2 + (ξ′)−2 and y′
m = −y + m[b0 + ((w − b0)/2|m|)].

First of all, we neglect in equation (A.3) the l = 0 terms which represent uniform (x-independent)
interaction. Secondly, when λ � a0, as practically encountered in films, k0,λ′ ≈ k0. Then the
|l| > 1 terms can be neglected, resulting in a sinusoidal potential |l| = 1. Further, in the
summation over m only the contributions from the m = ±1 terms are significant. Next we
employ the relation ξ2/a2

0 = b
√

3/4π and rewrite k0,ξ′ = (1/a0)
√

4π2 + 8π(1 − b)/(
√

3C2b).
The resulting expression for the total edge potential is

Vce,0(r) = −
[

cosh(k0y) − exp [(1 − s(b))πw+b0
a0

]

s(b)
cosh(k0ys(b))

]

× 2U0(1 − b) exp

(
−π

w + b0

a0

)
cos k0x, (A.5)

where s(b) =
√

1 + (2 − 2b)/(π
√

3C2b).
For a channel with w = b0, the maximum µ(b) of the sinusoidal pinning force −∂xVce,0 at

y = 0 is then given by

µ(b) � 2
U0(1 − b)f(b)

12πa0
, (A.6)

where we used e−π
√

3 � 1/24π2 and

f(b) = 1 − 24π3

exp

(
−

√
π
√

3(2−2b)

C2b
+ 3π2

)
√

π(2−2b)

C2
√

3b
+ π2

. (A.7)
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It can be checked that the associated shear modulus c66 = π
√

3µ(b)/2a0 is very similar to the
interpolation formula of Brandt equation (A.2). Additionally, the edge potential equation (A.5)
is harmonic for all fields. Hence the ideal flow stress of a commensurate, ordered channel, is
characterized by Frenkels value A0 = 1/π

√
3 for all fields.14 In the low-field limit b � 0.2 (and

λ/a0 � 1/π), the above expressions reduce to equations (8) and (9) in section 3.1.
Using the field-dependent vortex interaction equation (A.2), one can derive the parameters

in the s-G description of section 3.1, generalized for higher fields. The equation for the chain
stiffness becomes

κq = U0π(1 − b)

[
λ′/a0√

1 + λ′2q2
− ξ′/a0√

1 + ξ′2q2

]
. (A.8)

The reduced stiffness is obtained from g(b) = κ0(b)/(k0µ(b)a2
0):

g(b) = 3π

f(b)

√ √
3b

4π(1 − b)

(
λ

ξ
− C√

2

)
. (A.9)

Taking into account these refinements in equations (10) and (17), the defect width in the non-local
regime becomes

lnl
d (b) = 6π2a0/f(b). (A.10)

One can obtain the typical crossover field bnl (or typical λ/a0,nl) at which non-local behaviour
sets in for a chain in an ordered channel by equating equation (A.10) to the s-G value for the kink
width 2πa0

√
g(b). Approximating f(b) � (1 − b), one finds 1 − b = 3π/

√
g(b), which has the

approximate solution

bnl � 1
2

[
1 −

√
1 − (48

√
3π3ξ2/λ2)

]
. (A.11)

Hence, the non-local regime is absent for a channel in a material with λ/ξ � 50 (and thickness
d � λ). For λ/ξ � 60, non-local behaviour occurs for b > bnl with bnl � 0.2. This is to be
compared with the estimate a0,nl < λ/3π resulting from a simple London interaction, see
section 3.1.

Appendix B. Solution to the dynamic s-G equation

For a displacement field of the form equation (24), expressed in modes with wave vector
mq = 2πmcd and amplitude hm, equation (23) for the v–f curve attains the form:

f = γv

[
1 + 2k2

0

M∑
m=1

m2|hm|2
]

. (B.1)

14 Note that this calculation neglects fluctuation effects at high field.
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The amplitudes hm are obtained by inserting equation (24) into the equation of motion (13) with
the wavelength-dependent elasticity κ(q) from equation (12). Since h can become of the order
of a lattice spacing a0, one expands the ‘sin’ term in (13) up to second order in h. Furthermore,
we assume that hm decays rapidly upon increasing m and we keep only the three lowest order
contributions ofhm withm � 3. Collecting terms of equal wave number, one obtains the following
set of approximate equations:

2

µ
(iγvk0 + K1,q)h1 = −i + ik2

0(|h1|2 + |h2|2) + k0h2 − i(k2
0/2)h2

1, (B.2)

2

µ
(2iγvk0 + K2,q)h2 = k0h1 + ik2

0(h
∗
1h2 − h1h2), (B.3)

2

µ
(3iγvk0 + K3,q)h3 = k0h2 + i(k2

0/2)h2
1, (B.4)

where Km,q = m2q2κ(mq) and h∗ denotes the complex conjugate of h. At small v, the real
components of h vanish and the amplitudes describing the shape of the quasi-static deformations
are given by

|h1| ≈
(2K1,q/µ) −

√
(2K1,q/µ)2 + 6k2

0

3k2
0

, (B.5)

|h2| ≈ −k0|h1|
2k2

0|h1| − (2K2,q/µ)
, (B.6)

|h3| ≈ µ(k0|h2| − k2
0|h1|2/2)

2K3,q

. (B.7)

For arbitrary v, the hms in equations (B.2)–(B.4) may be determined by a mathematical program.
However, the most important effect of the coupling is that above a characteristic velocity v∗ (see
below), |h2| and |h3| decrease rapidly as |h2| ∼ |h1|/v and |h3| ∼ |h1|2/3v, so that only the first
Fourier mode survives. This mode is described by (v � v∗):

h1(v) = (2γv/µ) − √
(2γv/µ)2 + 2

k0
≈ − µ

2γvk0
. (B.8)

Since equation (B.8) can be obtained by neglecting the elastic force terms κn,q, it describes the
deviation from the average velocity of a single particle in a periodic potential. Further analysis
of equations (B.2)–(B.4) shows that the crossover velocity v∗ is determined by the amplitude of
the quasi-static result in equations (B.5)–(B.7):

(2γv∗k0/µ)2
3∑

m=1

(m|hm|)2 ≈ 1. (B.9)
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Using the definition

K2
eff (cd = q

2π
) ≡ µ2

4

(
3∑

m=1

(m|hm|)2

)−1

, (B.10)

we rewrite equation (B.9):

k0v
∗ = Keff (cd)/γ. (B.11)

Here γ/Keff (cd) can be interpreted as the effective relaxation time for the nonlinear deformations
in the chain, which is expressed through the relaxation times γ/Km,q of linear modes (phonons)
by equation (B.10). The velocity dependence of

∑
(m|hm|)2 may then be written as

3∑
m=1

m2|hm(v)|2 = µ2

4[K2
eff + (γvk0)2]

. (B.12)

This has the correct small v behaviour (where higher modes play a role) and large v behaviour
(where h2 ≈ h3 ≈ 0). First-order perturbation using only h1 to first order in equation (B.2) yields
the same functional form but with K2

eff replaced by K2
1,q, supporting the analytical interpolation

made in obtaining equation (B.12). Finally, using equation (B.1) one arrives at equation (25) in
section 3.1.

Appendix C. Elastic shear waves in commensurate, ordered channels

Starting from equation (26) we write u as the sum of a spatially uniform dc-component and
a non-uniform, time-dependent component h(y, t). The result for h(y, t) = u(y, t) − vt is the
following modified diffusion equation:

γ∂th(y, t) = (f − γv) + c∂2
yh(y, t), (C.1)

where c = b2
0k0µ/2 = c66a0b0. The boundary condition is set by

γ∂th(−w/2, t) = −(µ/2) sin [ω0t + h(−w/2, t)](c/b2
0)�h(t), (C.2)

and similarly for y = +w/2. Here the discrete character of the array near the CEs is retained
in �h = h(−w/2 + b0, t) − h(−w/2, t). For the pinning term (last term on the rhs), we now
use the large-velocity expansion for the restoring force from one CE: (µ/2) sin [k0(vt + h)] �
(µ/2) sin [ω0t]. Then equations (C.1) and (C.2) become similar to those for heat diffusion in a
rod with heat sources, at both ends, that vary sinusoidally in time. In our case the frequency is
the washboard frequency ω0 = k0v. By separation of variables one finds

h(y, t) = heAe,v(w)[fv(y) cos(ω0t) + gv(y) sin(ω0t)] − (f − γv)

2c
y2, (C.3)

where fv(y) = − cos(y/ l⊥,v) cosh(y/ l⊥,v) and gv(y) = sin(y/ l⊥,v) sinh(y/ l⊥,v) with a velocity
(frequency)-dependent ‘healing’ length l⊥,v = √

2c/γω0 = √
(µ/γv)b0. The factor Ae,v(w) =

1/
√

f 2
v (w/2) + g2

v(w/2) normalizes the displacement at the CE to he. The latter is obtained from
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Figure C.1. Velocity profile ∂th(y, t) versus time from equation (C.3) in a channel
with w/b0 � 9 for (a) γv/µ � 0.4 and (b) γv/µ � 2.

the boundary condition equation (C.2). In the limit w/b0 = n � 3 and γv/µ � 0.25, he can be
approximated by

he � µ

2k0γv

√
2γv

2γv + µ
. (C.4)

The solution (C.3) describes a periodic velocity modulation ∂th of each chain, with a
y-dependent amplitude |h′| and phase shift. The latter reflects periodic lagging and advancing
of the inner rows with respect to the outer ones. Both the decay of |h′| away from the CE and
the phase shift strongly increase with velocity through l⊥,v. In figure C.1 we have illustrated
this behaviour for small velocity γv/µ = 0.4 (a) and larger velocity γv/µ = 2 (b). Although the
result in (a) is actually out of the regime of validity of the high-velocity expansion, the ‘in-phase’
behaviour at small v is a feature that qualitatively agrees with the simulations. For comparison
we show in figure C.2 numerical results for the oscillating velocity component for w/b0 = 9
and small drive, f � 2fs � µ/5 (γv/µ ≈ 0.16). In addition to the small phase shift, one
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Figure C.2. Simulation result of the profile of the fluctuating velocity component
∂th versus time in a channel with w/b0 = 9 at f = 0.011. The projection in the
y − dh/dt plane further clarifies the y-dependence of |h′|.

observes that the modulation is highly non-sinusoidal, which is not captured by our approximate
solution.

Based on the above, one can also evaluate the dynamic friction force f − γv. Using
equations (20) and (23), the expression for the elastic-continuum u(y, t) would be f − γv =
(γ/vw)

∫
dy dt[∂th(y, t)]2. However, in the velocity regime where our solution applies, the length

l⊥,v � 2b0. Since we have a discrete number of vortex rows, it is the two outer rows at y = ±w/2
which give the dominant contribution. Evaluating f − γv using equation (C.4) then leads to
equation (28) in section 4.

Appendix D. Disordered channel potential and pinning of defects

In this appendix we derive the disorder corrections to the channel potential and the effect on
pinning of the chain. For the vortex interaction, we use the London potential of equation (6).
Starting from equation (30) we first split the potential in contributions from row m with transverse
coordinate y:

Vm(x) = (2π)−1

∫
dkV(k, y)ρm(k)eikx, (D.1)

where k = kx and

V(k, y) = U0π
e−y

√
k2+λ−2

√
k2 + λ−2

. (D.2)
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In addition, ρm(k) in equation (D.1) is related to the longitudinal displacement field dx
m(x)

via [48]

ρm(k) = a−1
0

∫
dx[1 − ∂xdm + δρm(x − dm)]e−ikx, (D.3)

which contains the microscopic density modulation δρm(x − dm(x)) = ∑
l �=0 cos(lk0[x − dm(x)])

as well as the density variations ∝∂xdm due to long-wavelength deformations. Inserting equation
(D.3) in equation (D.1) yields a total potential of the form Vm(x) = Vl,m(x) + Vp,m(x), where

Vl,m(x) = −a−1
0

∫
dx′ V(x − x′, y)∂x′ dm(x′), (D.4)

and

Vp,m(x) = 2

a0

∫
dx′ V(x − x′, y) cos [k0(x

′ − dm)]. (D.5)

A constant offset arising from the ‘dc’ part of the density has been omitted in equation (D.4) and
in equation (D.5) only the l = ±1 components of the density are taken into account. The latter
represents a quasi-periodic potential with wavelength ∼a0. It is only significant for y � 1.5b0,
i.e. for m = ±1, as in the pure case. Therefore, Vp can be written as

Vp = −[µ + δµ(x)] cos [k0(x − d)]/k0, (D.6)

where d = (d1 + d−1)/2 and

δµ(x) = k0

a2
0

∫
dk[V(k+, b0) − V(k−, b0)]ikd(k)eikx � π

√
3µ∂xd, (D.7)

where k± = k0 ± k and the second line is valid for k � 0.4k0. The local strains thus also
provide variations in the potential height. A similar conclusion holds when transverse shifts
in the CE are included. In the simulations, the mean-squared strain is 〈(∇ · d)2〉 = �2/3
and short range (∼a0/2) correlated along x with correlator S(s, 0) ≡ 〈∂xd(x, y)∂xd(x + s, y′ =
y)〉x � (�2/3)e−(2s/a0)

2
. Accordingly, the amplitude fluctuations of the periodic potential are

characterized by


a(s) = 〈δµ(x)δµ(x + s)〉x

k2
0

� (µ�a0/2)2 exp

[
−

(
2s

a0

)2
]

. (D.8)

The non-local contributions equation (D.4) add up to a total contribution Vl = ∑
m�=0 Vl,m

in Vce. Vl thus originates from strains within a region ∼λ around the channel and will be smooth
on the scale a0 (we assume λ � a0). Transforming the sum into an integral and using equation
(D.2), the correlator 
l = 〈Vl(x)Vl(x + s)〉 can be written as15


l(s) = 1

a4
0

∫
CE

dy dy′
∫

dxAy,y′(x)S(s − x, y′ − y). (D.9)

15 We employed the fact that for a function of the form R(x) = ∫
dx′ f(±(x′ − x))g(x′), the correlator is given by

〈RxRx+s〉 = ∫
dp Af (p)〈g(x)g(x + s ± p)〉 with Af (p) = ∫

dx′ f(x′)f(x′ + p).
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The term Ay,y′(x) = (2π)−1
∫

dk V(k, y)V(k, y′) cos(kx) can be approximated by

Ay,y′(x) � U2
0πλ exp

(
−|y| + |y′|

λ

)
exp

[(
−x

λ

)2]
. (D.10)

In case the strains are uncorrelated between the rows, S(x, y′ − y) ∼ exp(−(2(x2 + (y′ − y)2)/

a2
0)) and equation (D.9) can be approximated by


l(s) � Cα�
2U2

0 (λ/a0)
1+α exp

[
−

(
s

λ

)2
]

, (D.11)

with α = 1 and C1 � 1. In the case of uniform strains, S(x) is independent of y′ − y. Then again
the correlator is given by the above formula, but with α = 2 and C2 = (4/3)π3/2.

To study the effect of the disorder on the pinning of vortices inside the channel, we write
the total energy as a sum of an elastic and a pinning term:

H(x, u) = Hel + Hp = a−1
0

∫
dx

κ0

2
(∂xu)2 + Hp. (D.12)

The dispersion of the elastic constant has been neglected and u represents the displacements
of vortices inside the channel. By writing the density of the chain as ρc(x, u) = a−1

0 [1 − ∂xu +∑
l �=0 cos(lk0(x − u))], the pinning term Hp in equation (D.12) can be expressed as

Hp = a−1
0

∫
dx (Vp + Vl)(δρ(x, u) − ∂xu), (D.13)

where only the lowest Fourier components of ρc are retained, i.e. δρ(x, u) = 2 cos k0(x − u). This
expression can be simplified as follows. Since we consider the limit where ∂xu is nearly constant
within a0, the cross-term of the quasi-periodic potential Vp and ∂xu can be neglected compared
to the Vl(x)∂xu term. The product Vlδρ(x, u) is also oscillatory and can be neglected as well.16

The other remaining term Vp(x)δρ(x, u) can be written as (µ(x)/k0) cos [k0(u − d)]. Shifting
the argument via k0(u − d) = k0ũ and writing ũ → u, an extra term κ0∂xd∂xu is generated in Hel

in equation (D.12) (and also u-independent terms which can be neglected). The total coupling
to the strain ∂xu then consists of Vs ≡ Vl − κ0∂xd. The result for the total energy is

H = HSG −
∫

dx

a0

[
δµ(x)

k0
cos(k0u) − Vs(x)∂xu

]
. (D.14)

The potential Vs has a correlator 〈Vs(x)Vs(x + s)〉 = 
s(s) which is characterized by


s(s) = 16π2g2

3

a(s) + 
l(s) +

2U0�
2λ

a0
V(s, b0), (D.15)

in which g = κ0/(2πµa0) and the last term arises from cross-correlations. In equation (D.14),
HSG = ∫

dx [(κ0/2)(∂xu)2 − (µ/k0) cos(k0u)] is the original s-G energy functional of the pure

16 One can calculate that the typical correction Eb,l to the pin energy of a defect due to a ‘backward’ scattering term∫
Vl(x) cos[k0(x − ud)] vanishes rapidly with increasing λ, i.e. 〈E2

b,l〉 � U2
0�2g1/2(λ/a0)

2+αe−(πλ/a0)
2
.

New Journal of Physics 7 (2005) 71 (http://www.njp.org/)

http://www.njp.org/


50 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

model and the remaining terms reflect the corrections due to disorder. Finally, we denote the
first correction, which is due to the amplitude fluctuations, as Ha and the second, coupling to the
strain, as Hs.

For weak disorder, we can now calculate the effect of disorder on a defect in the chain by
assuming that the shape of a defect at x, ud(x

′ − x) = 2a0 arctan [exp(±2π(x′ − x)/ ld)]/π, is
unchanged by disorder [50]. The pinning energy of a defect due to the term Ha is:

Ea(x) = (a0k0)
−1

∫
dx′ δµ(x′) cos(k0ud(x

′ − x)). (D.16)

The correlations of Ea are given by [72]

〈Ea(x)Ea(x + s)〉 = 1

a2
0

∫
dp Aa(p)
a(s − p), (D.17)

where

Aa(p) =
∫

4(ld/2π) dx̃

cosh2(x̃) cosh2(x̃ + p̃)
� ld exp

[
−

(
4p

ld

)2
]

, (D.18)

with x̃ = 2πx/ld . For ld � a0, we can approximate 
a(s) in equation (D.17) by 
a(s) �
(µ�)2(

√
πa3

0/8)δ(s) leading to

〈Ea(x)Ea(x + s)〉 = (
√

π/8)µ2�2lda0 exp

[
−

(
4s

ld

)2
]

. (D.19)

The effect of the coupling to the strain is given by Es(x) = (a0)
−1

∫
dx′ Vs(x

′)∂xud(x
′ − x)

which has the following correlator:

〈Es(x)Es(x + s)〉 = 1

a2
0

∫
dpAs(p)
s(s − p). (D.20)

Using ∂xud = (2a0/ld) cosh−1(2πx/ld), As is given by

As(p) =
∫

(2a2
0/πld) dx̃

cosh(x̃) cosh(x̃ + p̃)
�

4a2
0 exp

[
−

(
2p

ld

)2
]

πld
. (D.21)

For ld � λ the final result is

〈Es(x)Es(x + s)〉 � (U0�λ)2

lda0
[Cl + 4] exp

[
−

(
2s

ld

)2
]

, (D.22)

where the term Cl � 2Cα(λ/a0)
α in square brackets is due to the non-local contribution Vl and

the factor 4 arises from the term ∼ ∂xd in Vs. Hence, for large λ/a0 the non-local term dominates
in the coupling to the strain.
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