36 research outputs found

    Influences of Excluded Volume of Molecules on Signaling Processes on Biomembrane

    Get PDF
    We investigate the influences of the excluded volume of molecules on biochemical reaction processes on 2-dimensional surfaces using a model of signal transduction processes on biomembranes. We perform simulations of the 2-dimensional cell-based model, which describes the reactions and diffusion of the receptors, signaling proteins, target proteins, and crowders on the cell membrane. The signaling proteins are activated by receptors, and these activated signaling proteins activate target proteins that bind autonomously from the cytoplasm to the membrane, and unbind from the membrane if activated. If the target proteins bind frequently, the volume fraction of molecules on the membrane becomes so large that the excluded volume of the molecules for the reaction and diffusion dynamics cannot be negligible. We find that such excluded volume effects of the molecules induce non-trivial variations of the signal flow, defined as the activation frequency of target proteins, as follows. With an increase in the binding rate of target proteins, the signal flow varies by i) monotonically increasing; ii) increasing then decreasing in a bell-shaped curve; or iii) increasing, decreasing, then increasing in an S-shaped curve. We further demonstrate that the excluded volume of molecules influences the hierarchical molecular distributions throughout the reaction processes. In particular, when the system exhibits a large signal flow, the signaling proteins tend to surround the receptors to form receptor-signaling protein clusters, and the target proteins tend to become distributed around such clusters. To explain these phenomena, we analyze the stochastic model of the local motions of molecules around the receptor.Comment: 31 pages, 10 figure

    Effects of Macromolecular Crowding on Protein Conformational Changes

    Get PDF
    Many protein functions can be directly linked to conformational changes. Inside cells, the equilibria and transition rates between different conformations may be affected by macromolecular crowding. We have recently developed a new approach for modeling crowding effects, which enables an atomistic representation of “test” proteins. Here this approach is applied to study how crowding affects the equilibria and transition rates between open and closed conformations of seven proteins: yeast protein disulfide isomerase (yPDI), adenylate kinase (AdK), orotidine phosphate decarboxylase (ODCase), Trp repressor (TrpR), hemoglobin, DNA β-glucosyltransferase, and Ap4A hydrolase. For each protein, molecular dynamics simulations of the open and closed states are separately run. Representative open and closed conformations are then used to calculate the crowding-induced changes in chemical potential for the two states. The difference in chemical-potential change between the two states finally predicts the effects of crowding on the population ratio of the two states. Crowding is found to reduce the open population to various extents. In the presence of crowders with a 15 Å radius and occupying 35% of volume, the open-to-closed population ratios of yPDI, AdK, ODCase and TrpR are reduced by 79%, 78%, 62% and 55%, respectively. The reductions for the remaining three proteins are 20–44%. As expected, the four proteins experiencing the stronger crowding effects are those with larger conformational changes between open and closed states (e.g., as measured by the change in radius of gyration). Larger proteins also tend to experience stronger crowding effects than smaller ones [e.g., comparing yPDI (480 residues) and TrpR (98 residues)]. The potentials of mean force along the open-closed reaction coordinate of apo and ligand-bound ODCase are altered by crowding, suggesting that transition rates are also affected. These quantitative results and qualitative trends will serve as valuable guides for expected crowding effects on protein conformation changes inside cells

    On-surface aggregation of α-Synuclein at nanomolar concentrations results in two distinct growth mechanisms

    Full text link
    The aggregation of α-synuclein (α-Syn) is believed to be one of the key steps driving the pathology of Parkinson’s disease and related neurodegenerative disorders. One of the present hypotheses is that the onset of such pathologies is related to the rise of α-Syn levels above a critical concentration at which toxic oligomers or mature fibrils are formed. In the present study, we find that α-Syn aggregation in vitro is a spontaneous process arising at bulk concentrations as low as 1 nM and below in the presence of both hydrophilic glass surfaces and cell membrane mimicking supported lipid bilayers (SLBs). Using three-dimensional supercritical angle fluorescence (3D-SAF) microscopy, we observed the process of α-Syn aggregation in situ. As soon as α-Syn monomers were exposed to the surface, they started to adsorb and aggregate along the surface plane without a prior lag phase. However, at a later stage of the aggregation process, a second type of aggregate was observed. In contrast to the first type, these aggregates showed an extended structure being tethered with one end to the surface and being mobile at the other end, which protruded into the solution. While both types of α-Syn aggregates were found to contain amyloid structures, their growing mechanisms turned out to be significantly different. Given the clear evidence that surface-induced α-Syn aggregation in vitro can be triggered at bulk concentrations far below physiological concentrations, the concept of a critical concentration initiating aggregation in vivo needs to be reconsidered
    corecore