1,177 research outputs found

    Glauber slow dynamics of the magnetization in a molecular Ising chain

    Full text link
    The slow dynamics (10^-6 s - 10^4 s) of the magnetization in the paramagnetic phase, predicted by Glauber for 1d Ising ferromagnets, has been observed with ac susceptibility and SQUID magnetometry measurements in a molecular chain comprising alternating Co{2+} spins and organic radical spins strongly antiferromagnetically coupled. An Arrhenius behavior with activation energy Delta=152 K has been observed for ten decades of relaxation time and found to be consistent with the Glauber model. We have extended this model to take into account the ferrimagnetic nature of the chain as well as its helicoidal structure.Comment: 4 pages, 4 figures (low resolution), 16 references. Submitted to Physical Review Letter

    Finsler geometry on higher order tensor fields and applications to high angular resolution diffusion imaging.

    Get PDF
    We study 3D-multidirectional images, using Finsler geometry. The application considered here is in medical image analysis, specifically in High Angular Resolution Diffusion Imaging (HARDI) (Tuch et al. in Magn. Reson. Med. 48(6):1358–1372, 2004) of the brain. The goal is to reveal the architecture of the neural fibers in brain white matter. To the variety of existing techniques, we wish to add novel approaches that exploit differential geometry and tensor calculus. In Diffusion Tensor Imaging (DTI), the diffusion of water is modeled by a symmetric positive definite second order tensor, leading naturally to a Riemannian geometric framework. A limitation is that it is based on the assumption that there exists a single dominant direction of fibers restricting the thermal motion of water molecules. Using HARDI data and higher order tensor models, we can extract multiple relevant directions, and Finsler geometry provides the natural geometric generalization appropriate for multi-fiber analysis. In this paper we provide an exact criterion to determine whether a spherical function satisfies the strong convexity criterion essential for a Finsler norm. We also show a novel fiber tracking method in Finsler setting. Our model incorporates a scale parameter, which can be beneficial in view of the noisy nature of the data. We demonstrate our methods on analytic as well as simulated and real HARDI data

    Evaluating preclinical evidence for clinical translation in childhood brain tumours: Guidelines from the CONNECT, PNOC, and ITCC brain networks

    Get PDF
    Clinical outcomes for many childhood brain tumours remain poor, despite our increasing understanding of the underlying disease biology. Advances in molecular diagnostics have refined our ability to classify tumour types and subtypes, and efforts are underway across multiple international paediatric neuro-oncology consortia to take novel biological insights in the worst prognosis entities into innovative clinical trials. Whilst for the first time we are designing such studies on the basis of disease-specific biological data, the levels of preclincial evidence in appropriate model systems on which these trials are initiated is still widely variable. We have considered these issues between CONNECT, PNOC and ITCC-Brain, and developed a framework in which we can assess novel concepts being brought forward for possible clinical translation. Whilst not intended to be proscriptive for every possible circumstance, these criteria provide a basis for self-assessment of evidence by laboratory scientists, and a platform for discussion and rational decision-making prior to moving forward clinically

    Enhanced production of oxidised mercury over the tropical Pacific Ocean: A key missing oxidation pathway

    Get PDF
    Mercury is a contaminant of global concern. It is transported in the atmosphere primarily as gaseous elemental mercury, but its reactivity and deposition to the surface environment, through which it enters the aquatic food chain, is greatly enhanced following oxidation. Measurements and modelling studies of oxidised mercury in the polar to sub-tropical marine boundary layer (MBL) have suggested that photolytically produced bromine atoms are the primary oxidant of mercury. We report year-round measurements of elemental and oxidised mercury, along with ozone, halogen oxides (IO and BrO) and nitrogen oxides (NO2), in the MBL over the Galápagos Islands in the equatorial Pacific. Elemental mercury concentration remained low throughout the year, while higher than expected levels of oxidised mercury occurred around midday. Our results show that the production of oxidised mercury in the tropical MBL cannot be accounted for by bromine oxidation only, or by the inclusion of ozone and hydroxyl. As a two-step oxidation mechanism, where the HgBr intermediate is further oxidised to Hg(II), depends critically on the stability of HgBr, an additional oxidant is needed to react with HgBr to explain more than 50% of the observed oxidised mercury. Based on best available thermodynamic data, we show that atomic iodine, NO2, or HO2 could all play the potential role of the missing oxidant, though their relative importance cannot be determined explicitly at this time due to the uncertainties associated with mercury oxidation kinetics. We conclude that the key pathway that significantly enhances atmospheric mercury oxidation and deposition to the tropical oceans is missing from the current understanding of atmospheric mercury oxidation

    Reduced field-of-view diffusion-weighted imaging of the lumbosacral enlargement: a pilot in vivo study of the healthy spinal cord at 3T

    Get PDF
    Diffusion tensor imaging (DTI) has recently started to be adopted into clinical investigations of spinal cord (SC) diseases. However, DTI applications to the lower SC are limited due to a number of technical challenges, related mainly to the even smaller size of the SC structure at this level, its position relative to the receiver coil elements and the effects of motion during data acquisition. Developing methods to overcome these problems would offer new means to gain further insights into microstructural changes of neurological conditions involving the lower SC, and in turn could help explain symptoms such as bladder and sexual dysfunction. In this work, the feasibility of obtaining grey and white matter (GM/WM) DTI indices such as axial/radial/mean diffusivity (AD/RD/MD) and fractional anisotropy (FA) within the lumbosacral enlargement (LSE) was investigated using a reduced field-of-view (rFOV) single-shot echo-planar imaging (ss-EPI) acquisition in 14 healthy participants using a clinical 3T MR system. The scan-rescan reproducibility of the measurements was assessed by calculating the percentage coefficient of variation (%COV). Mean FA was higher in WM compared to GM (0.58 and 0.4 in WM and GM respectively), AD and MD were higher in WM compared to GM (1.66 µm2ms-1 and 0.94 µm2ms-1 in WM and 1.2 µm2ms-1 and 0.82 µm2ms-1 in GM for AD and MD respectively) and RD was lower in WM compared to GM (0.58 µm2ms-1 and 0.63 µm2ms-1 respectively). The scan-rescan %COV was lower than 10% in all cases with the highest values observed for FA and the lowest for MD. This pilot study demonstrates that it is possible to obtain reliable tissue-specific estimation of DTI indices within the LSE using a rFOV ss-EPI acquisition. The DTI acquisition and analysis protocol presented here is clinically feasible and may be used in future investigations of neurological conditions implicating the lower SC

    White Rabbit Applications for FAIR Experiments

    Get PDF

    Metastability in zero-temperature dynamics: Statistics of attractors

    Full text link
    The zero-temperature dynamics of simple models such as Ising ferromagnets provides, as an alternative to the mean-field situation, interesting examples of dynamical systems with many attractors (absorbing configurations, blocked configurations, zero-temperature metastable states). After a brief review of metastability in the mean-field ferromagnet and of the droplet picture, we focus our attention onto zero-temperature single-spin-flip dynamics of ferromagnetic Ising models. The situations leading to metastability are characterized. The statistics and the spatial structure of the attractors thus obtained are investigated, and put in perspective with uniform a priori ensembles. We review the vast amount of exact results available in one dimension, and present original results on the square and honeycomb lattices.Comment: 21 pages, 6 figures. To appear in special issue of JPCM on Granular Matter edited by M. Nicodem
    • …
    corecore