135 research outputs found
Inter-areal coordination of columnar architectures during visual cortical development
The occurrence of a critical period of plasticity in the visual cortex has
long been established, yet its function in normal development is not fully
understood. Here we show that as the late phase of the critical period unfolds,
different areas of cat visual cortex develop in a coordinated manner.
Orientation columns in areas V1 and V2 become matched in size in regions that
are mutually connected. The same age trend is found for such regions in the
left and right brain hemisphere. Our results indicate that a function of
critical period plasticity is to progressively coordinate the functional
architectures of different cortical areas - even across hemispheres.Comment: 30 pages, 1 table, 6 figure
Pinwheel stabilization by ocular dominance segregation
We present an analytical approach for studying the coupled development of
ocular dominance and orientation preference columns. Using this approach we
demonstrate that ocular dominance segregation can induce the stabilization and
even the production of pinwheels by their crystallization in two types of
periodic lattices. Pinwheel crystallization depends on the overall dominance of
one eye over the other, a condition that is fulfilled during early cortical
development. Increasing the strength of inter-map coupling induces a transition
from pinwheel-free stripe solutions to intermediate and high pinwheel density
states.Comment: 10 pages, 4 figure
Reorganization of columnar architecture in the growing visual cortex
Many cortical areas increase in size considerably during postnatal
development, progressively displacing neuronal cell bodies from each other. At
present, little is known about how cortical growth affects the development of
neuronal circuits. Here, in acute and chronic experiments, we study the layout
of ocular dominance (OD) columns in cat primary visual cortex (V1) during a
period of substantial postnatal growth. We find that despite a considerable
size increase of V1, the spacing between columns is largely preserved. In
contrast, their spatial arrangement changes systematically over this period.
While in young animals columns are more band-like, layouts become more
isotropic in mature animals. We propose a novel mechanism of growth-induced
reorganization that is based on the `zigzag instability', a dynamical
instability observed in several inanimate pattern forming systems. We argue
that this mechanism is inherent to a wide class of models for the
activity-dependent formation of OD columns. Analyzing one member of this class,
the Elastic Network model, we show that this mechanism can account for the
preservation of column spacing and the specific mode of reorganization of OD
columns that we observe. We conclude that neurons systematically shift their
selectivities during normal development and that this reorganization is induced
by the cortical expansion during growth. Our work suggests that cortical
circuits remain plastic for an extended period in development in order to
facilitate the modification of neuronal circuits to adjust for cortical growth.Comment: 8+13 pages, 4+8 figures, paper + supplementary materia
c-di-GMP modulates type IV MSHA pilus retraction and surface attachment in Vibrio cholerae.
Biofilm formation by Vibrio cholerae facilitates environmental persistence, and hyperinfectivity within the host. Biofilm formation is regulated by 3',5'-cyclic diguanylate (c-di-GMP) and requires production of the type IV mannose-sensitive hemagglutinin (MSHA) pilus. Here, we show that the MSHA pilus is a dynamic extendable and retractable system, and its activity is directly controlled by c-di-GMP. The interaction between c-di-GMP and the ATPase MshE promotes pilus extension, whereas low levels of c-di-GMP correlate with enhanced retraction. Loss of retraction facilitated by the ATPase PilT increases near-surface roaming motility, and impairs initial surface attachment. However, prolonged retraction upon surface attachment results in reduced MSHA-mediated surface anchoring and increased levels of detachment. Our results indicate that c-di-GMP directly controls MshE activity, thus regulating MSHA pilusΒ extension and retraction dynamics, and modulating V. cholerae surface attachment and colonization
Coordinated optimization of visual cortical maps (I) Symmetry-based analysis
In the primary visual cortex of primates and carnivores, functional
architecture can be characterized by maps of various stimulus features such as
orientation preference (OP), ocular dominance (OD), and spatial frequency. It
is a long-standing question in theoretical neuroscience whether the observed
maps should be interpreted as optima of a specific energy functional that
summarizes the design principles of cortical functional architecture. A
rigorous evaluation of this optimization hypothesis is particularly demanded by
recent evidence that the functional architecture of OP columns precisely
follows species invariant quantitative laws. Because it would be desirable to
infer the form of such an optimization principle from the biological data, the
optimization approach to explain cortical functional architecture raises the
following questions: i) What are the genuine ground states of candidate energy
functionals and how can they be calculated with precision and rigor? ii) How do
differences in candidate optimization principles impact on the predicted map
structure and conversely what can be learned about an hypothetical underlying
optimization principle from observations on map structure? iii) Is there a way
to analyze the coordinated organization of cortical maps predicted by
optimization principles in general? To answer these questions we developed a
general dynamical systems approach to the combined optimization of visual
cortical maps of OP and another scalar feature such as OD or spatial frequency
preference.Comment: 90 pages, 16 figure
Coordinated optimization of visual cortical maps (II) Numerical studies
It is an attractive hypothesis that the spatial structure of visual cortical
architecture can be explained by the coordinated optimization of multiple
visual cortical maps representing orientation preference (OP), ocular dominance
(OD), spatial frequency, or direction preference. In part (I) of this study we
defined a class of analytically tractable coordinated optimization models and
solved representative examples in which a spatially complex organization of the
orientation preference map is induced by inter-map interactions. We found that
attractor solutions near symmetry breaking threshold predict a highly ordered
map layout and require a substantial OD bias for OP pinwheel stabilization.
Here we examine in numerical simulations whether such models exhibit
biologically more realistic spatially irregular solutions at a finite distance
from threshold and when transients towards attractor states are considered. We
also examine whether model behavior qualitatively changes when the spatial
periodicities of the two maps are detuned and when considering more than 2
feature dimensions. Our numerical results support the view that neither minimal
energy states nor intermediate transient states of our coordinated optimization
models successfully explain the spatially irregular architecture of the visual
cortex. We discuss several alternative scenarios and additional factors that
may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with
arXiv:1102.335
Foci of orientation plasticity in visual cortex
[Abstract] Cortical areas are generally assumed to be uniform in their capacity for adaptive changes or plasticity1, 2, 3, 4. Here we demonstrate, however, that neurons in the cat striate cortex (V1) show pronounced adaptation-induced short-term plasticity of orientation tuning primarily at specific foci. V1 neurons are clustered according to their orientation preference in iso-orientation domains5 that converge at singularities or pinwheel centres6, 7. Although neurons in pinwheel centres have similar orientation tuning and responses to those in iso-orientation domains, we find that they differ markedly in their capacity for adaptive changes. Adaptation with an oriented drifting grating stimulus alters responses of neurons located at and near pinwheel centres to a broad range of orientations, causing repulsive shifts in orientation preference and changes in response magnitude. In contrast, neurons located in iso-orientation domains show minimal changes in their tuning properties after adaptation. The anisotropy of adaptation-induced orientation plasticity is probably mediated by inhomogeneities in local intracortical interactions that are overlaid on the map of orientation preference in V1
The regulatory role of long-term depression in juvenile and adult mouse ocular dominance plasticity
The study of experience-dependent ocular dominance (OD) plasticity has greatly contributed to the understanding of visual development. During the critical period, preventing input from one eye results in a significant impairment of vision, and loss of cortical responsivity via the deprived eye. Residual ocular dominance plasticity has recently been observed in adulthood. Accumulating evidence suggests that OD plasticity involves N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD). Here we report that the administration of a selective LTD antagonist prevented the ocular dominance shift during the critical period. The NMDAR co-agonist D-serine facilitated adult visual cortical LTD and the OD shift in short-term monocularly deprived (MD) adult mice. When combined with reverse suture, D-serine proved effective in restoring a contralaterally-dominated visual input pattern in long-term MD mice. This work suggests LTD as a key mechanism in both juvenile and adult ocular dominance plasticity, and D-serine as a potential therapeutic in human amblyopic subjects
On the Origin of the Functional Architecture of the Cortex
The basic structure of receptive fields and functional maps in primary visual cortex is established without exposure to normal sensory experience and before the onset of the critical period. How the brain wires these circuits in the early stages of development remains unknown. Possible explanations include activity-dependent mechanisms driven by spontaneous activity in the retina and thalamus, and molecular guidance orchestrating thalamo-cortical connections on a fine spatial scale. Here I propose an alternative hypothesis: the blueprint for receptive fields, feature maps, and their inter-relationships may reside in the layout of the retinal ganglion cell mosaics along with a simple statistical connectivity scheme dictating the wiring between thalamus and cortex. The model is shown to account for a number of experimental findings, including the relationship between retinotopy, orientation maps, spatial frequency maps and cytochrome oxidase patches. The theory's simplicity, explanatory and predictive power makes it a serious candidate for the origin of the functional architecture of primary visual cortex
- β¦