76 research outputs found

    Beyond the second order magnetic anisotropy tensor: Higher-order components due to oriented magnetite exsolutions in pyroxenes, and implications for paleomagnetic and structural interpretations

    Get PDF
    Exsolved iron oxides in silicate minerals can be nearly ideal paleomagnetic recorders, due to their single-domain-like behaviour and the protection from chemical alteration by their surrounding silicate host. Because their geometry is crystallographically controlled by the host silicate, these exsolutions possess a shape preferred orientation that is ultimately controlled by the mineral fabric of the silicates. This leads to potentially significant anisotropic acquisition of remanence, which necessitates correction to make accurate interpretations in paleodirectional and paleointensity studies. Here, we investigate the magnetic shape anisotropy carried by magnetite exsolutions in pyroxene single crystals, and in pyroxene-bearing rocks based on torque measurements and rotational hysteresis data. Image analysis is used to characterize the orientation distribution of oxides, from which the observed anisotropy can be modelled. Both the high-field torque signal and corresponding models contain components of higher order, which cannot be accurately described by second order tensors usually employed to describe magnetic fabrics. Conversely, low-field anisotropy data do not show this complexity and can be adequately described with second-order tensors. Hence, magnetic anisotropy of silicate-hosted exsolutions is field-dependent and this should be taken into account when interpreting isolated ferromagnetic fabrics, and in anisotropy corrections

    Orogen-parallel deformation of the Himalayan mid-crust: Insights from structural and magnetic fabric analyses of the Greater Himalayan Sequence, Annapurna-Dhaulagiri Himalaya, central Nepal

    Get PDF
    The metamorphic core of the Himalaya (Greater Himalayan Sequence, GHS), in the Annapurna-Dhaulagiri region, central Nepal, recorded orogen-parallel stretching during midcrustal evolution. Anisotropy of magnetic susceptibility and field-based structural analyses suggest that midcrustal deformation of the amphibolite facies core of the GHS occurred under an oblate/suboblate strain regime with associated formation of low-angle northward dipping foliation. Magnetic and mineral stretching lineations lying within this foliation from the top of the GHS record right-lateral orogen-parallel stretching. We propose that oblate strain within a midcrustal flow accommodated oblique convergence between India and the arcuate orogenic front without the need for strain partitioning in the upper crust. Oblate flattening may have also promoted orogen-parallel melt migration and development of melt-depleted regions between km3 scale leucogranite culminations at ~50–100 km intervals along orogen strike. Following the cessation of flow, continued oblique convergence led to upper crustal strain partitioning between orogen-perpendicular convergence on thrust faults and orogen-parallel extension on normal and strike-slip faults. In the Annapurna-Dhaulagiri Himalaya, orogen-parallel stretching lineations are interpreted as a record of transition from midcrustal orogen-perpendicular extrusion to upper crustal orogen-parallel stretching. Our findings suggest that midcrustal flow and upper crustal extension could not be maintained simultaneously and support other studies from across the Himalaya, which propose an orogen-wide transition from midcrustal orogen-perpendicular extrusion to upper crustal orogen-parallel extension during the mid-Miocene. The 3-D nature of oblate strain and orogen-parallel stretching cannot be replicated by 2-D numerical simulations of the Himalayan orogen

    Magnetic dating of the Holocene monogenetic Tkarsheti volcano in the Kazbeki region (Great Caucasus)

    Get PDF
    The radiocarbon technique is widely used to date Late Pleistocene and Holocene lava flows. The significant difference with palaeomagnetic methods is that the 14C dating is performed on the organic matter carbonized by the rock formation or the paleosols found within or below the lava flow. On the contrary, the archaeomagnetic dating allows to date the moment when the lava is cooling down below the Curie temperatures. In the present study, we use the paleomagnetic dating to constrain the age of the Tkarsheti monogenetic volcano located within the Kazbeki Volcanic Province (Great Caucasus). A series of rock-magnetic experiments including the measurement of hysteresis curves, isothermal remanence, back-field and continuous thermomagnetic curves were applied. These experiments indicated that Pseudo-Single-Domain Ti-poor titanomagnetite is responsible for remanence. A characteristic remanent magnetization was obtained for all twenty analyzed samples yielding a stable single magnetization component observed upon both thermal and alternating field treatments. Comparison of the mean directions obtained (Inc = 48.6º, Dec = 6.4º, A95 = 4.0° and K = 67) with the SCHA.DIF.14k model yielded two main time intervals (4740–4650 or 4427– 4188 BC) as the best age estimate of the Lesser Tkarsheti lava flow. These results suggest an earlier age (between approximately 200 and 700 years) for this monogenetic lava flow than expected from the estimated age provided by a former 14C dating obtained in 1973 on woody remains. This first attempt to use the archaeomagnetic technique in the Caucasus indicates that the SCHA.DIF.14k geomagnetic model may be successfully used for dating purposes in the region.Projects BU0066U16 and BU235P18 (Junta de Castilla y Leon, Spain) and the European Regional Development Fund (ERDF). AG is grateful for financial support of CONACyT 252149 and UNAM-PAPIIT project 101717. MC-R and AC acknowledge the financial support given by the Junta de Castilla y León (project BU235P18) and the European Regional Development Fund (ERD)

    Recognizing detachment-mode seafloor spreading in the deep geological past.

    Get PDF
    Large-offset oceanic detachment faults are a characteristic of slow- and ultraslow-spreading ridges, leading to the formation of oceanic core complexes (OCCs) that expose upper mantle and lower crustal rocks on the seafloor. The lithospheric extension accommodated by these structures is now recognized as a fundamentally distinct “detachment-mode” of seafloor spreading compared to classical magmatic accretion. Here we demonstrate a paleomagnetic methodology that allows unequivocal recognition of detachment-mode seafloor spreading in ancient ophiolites and apply this to a potential Jurassic detachment fault system in the Mirdita ophiolite (Albania). We show that footwall and hanging wall blocks either side of an inferred detachment have significantly different magnetizations that can only be explained by relative rotation during seafloor spreading. The style of rotation is shown to be identical to rolling hinge footwall rotation documented recently in OCCs in the Atlantic, confirming that detachment-mode spreading operated at least as far back as the Jurassic

    An Integrated Paleomagnetic, Multimethod- Paleointensity, and Radiometric Study on Cretaceous and Paleogene Lavas From the Lesser Caucasus: Geomagnetic and Tectonic Implications

    Get PDF
    Sixteen rhyolitic and dacitic Cretaceous and Paleocene-Eocene lavas from the Lesser Caucasus have been subjected to paleomagnetic and multimethod paleointensity experiments to analyze the variations of the Earth's magnetic field. Paleointensity experiments were performed with two methods. Thellier-type experiments with the IZZI method on 65 specimens (nine flows) yielded 15 successful determinations and experiments with the multispecimen method on 14 samples (seven flows) yielded two successful determinations. The joint analysis of the results obtained with both methods produced a mean FuK = (19.9 ± 3.7) µT for upper Cretaceous and FPg = (20.7 ± 3.3) µT for Paleogene sites. Low virtual axial dipole moments for the Cretaceous (3.4 × 1022 Am2) and Paleogene (3.5 × 1022 Am2) samples support the idea of a lower average dipole moment during periods of stable polarity of the Earth magnetic field. Mean flow paleomagnetic directions did not match expected upper Cretaceous to Paleogene directions calculated from the European Apparent Polar Wander Path. While inclination results roughly agreed with expected values, a group of sites showed nearly North-South paleodeclinations (D = 1.1° ± 14.2°), and another group displayed eastward deviated paleodeclinations (D = 72.9° ± 26.6°). These results suggest the occurrence of nearly vertical-axis rotations, probably as a result of continental collision since Oligocene. In addition to paleomagnetic and palaeointensity analyses, new K-Ar absolute age determinations have been performed on three of the studied sites, yielding Late Cretaceous ages (78.7 ± 1.7, 79.7 ± 1.6, and 83.4 ± 1.8 Ma (2σ)).Project PID2019-105796GB-100/AEI/10.13039/501100011033 (Agencia Estatal de Investigación, Spain). M. Calvo-Rathert acknowledges funding from the Fulbright Commission and the Spanish Ministry of Science, Innovation, and Universities for a research stay at Hawaii University at Manoa. A. Goguitchaichvili acknowledges financial support from UNAM-PAPIIT no. IN101920. N. García-Redondo acknowledges financial support from Junta de Castilla y León and the European Research Development Fund (ERDF). EHB acknowledges financial support for laboratory maintenance and measurements to SOEST-HIGP and National Science Foundation grants. These is SOEST 11143 and HIGP 2420 contribution

    Evolution of the ridges of Midelt-Errachidia section in the High Atlas revealed by paleomagnetic data

    Get PDF
    New paleomagnetic data (43 sites) from Mesozoic sediments are contributed in this work, verifying the presence of a pervasive syntectonic Early Cretaceous remagnetization in the easternmost area of the Moroccan High Atlas. Using the small circle intersection method, we have calculated the characteristic remagnetization direction (Dec: 337.3, Inc: 38.4) that fits with a 100-Ma age, according to the Apparent Polar Wander Path of Africa. The paleomagnetic vectors of remagnetization are used to obtain the geometry during the remagnetization stage (100Ma) of one of the most renowned geological cross sections of the High Atlas, the Midelt-Errachidia profile. The partial restoration of the cross section at 100Ma allows us to determine the dips of the beds at the remagnetization stage in five structures (ridges or anticlines). Our results indicate that the five ridges that configure the Midelt-Errachidia profile were initiated to different degrees prior to wholesale compressive deformation during the Cenozoic. This configuration can be explained according to two different scenarios that we discuss in this paper: transpression and diapirism. The geological model obtained, both at present and at 100Ma, indicates the existence of a Mesozoic cover substantially decolled from the Paleozoic basement, what strongly contrasts with previously published transects of the same area

    Decrypting magnetic fabrics (AMS, AARM, AIRM) through the analysis of mineral shape fabrics and distribution anisotropy

    Get PDF
    The fieldwork was supported by the DIPS project (grant no. 240467) and the MIMES project (grant no. 244155) funded by the Norwegian Research Council awarded to O.G. O.P.'s position was funded from Y-TEC.Anisotropy of magnetic susceptibility (AMS) and anisotropy of magnetic remanence (AARM and AIRM) are efficient and versatile techniques to indirectly determine rock fabrics. Yet, deciphering the source of a magnetic fabric remains a crucial and challenging step, notably in the presence of ferrimagnetic phases. Here we use X-ray micro-computed tomography to directly compare mineral shape-preferred orientation and spatial distribution fabrics to AMS, AARM and AIRM fabrics from five hypabyssal trachyandesite samples. Magnetite grains in the trachyandesite are euhedral with a mean aspect ratio of 1.44 (0.24 s.d., long/short axis), and > 50% of the magnetite grains occur in clusters, and they are therefore prone to interact magnetically. Amphibole grains are prolate with magnetite in breakdown rims. We identified three components of the petrofabric that influence the AMS of the analyzed samples: the magnetite and the amphibole shape fabrics and the magnetite spatial distribution. Depending on their relative strength, orientation and shape, these three components interfere either constructively or destructively to produce the AMS fabric. If the three components are coaxial, the result is a relatively strongly anisotropic AMS fabric (P’ = 1.079). If shape fabrics and/or magnetite distribution are non-coaxial, the resulting AMS is weakly anisotropic (P’ = 1.012). This study thus reports quantitative petrofabric data that show the effect of magnetite distribution anisotropy on magnetic fabrics in igneous rocks, which has so far only been predicted by experimental and theoretical models. Our results have first-order implications for the interpretation of petrofabrics using magnetic methods.Publisher PDFPeer reviewe

    Emplacement and deformation of mesozoic Gabbros of the High Atlas (Morocco): paleomagnetism and magnetic fabrics

    Get PDF
    A paleomagnetic and magnetic fabric study is performed in Upper Jurassic gabbros of the central High Atlas (Morocco). These gabbros were emplaced in the core of preexisting structures developed during the extensional stage and linked to basement faults. These structures were reactivated as anticlines during the Cenozoic compressional inversion. Gabbros from 19 out of the 33 sampled sites show a stable characteristic magnetization, carried by magnetite, which has been interpreted as a primary component. This component shows an important dispersion due to postemplacement tectonic movements. The absence of paleoposition markers in these igneous rocks precludes direct restorations. A novel approach analyzing the orientation of the primary magnetization is used here to restore the magmatic bodies and to understand the deformational history recorded by these rocks. Paleomagnetic vectors are distributed along small circles with horizontal axes, indicating horizontal axis rotations of the gabbro bodies. These rotations are higher when the ratio between shales and gabbros in the core of the anticlines increases. Due to the uncertainties inherent to this work (the igneous bodies recording strong rotations), interpretations must be qualitative. The magnetic fabric is carried by ferromagnetic (s.s.) minerals mimicking the magmatic fabric. Anisotropy of magnetic susceptibility (AMS) axes, using the rotation routine inferred from paleomagnetic results, result in more tightly clustered magnetic lineations, which also become horizontal and are considered in terms of magma flow trend during its emplacement: NW-SE (parallel to the general extensional direction) in the western sector and NE-SW (parallel to the main faults) in the easternmost structures

    Correlation between magnetic anisotropy and phyllosilicate preferred orientation for various sedimentary rocks.

    No full text
    The low and high-field magnetic anisotropy (AMS, HFA) of the various sedimentary and anchimetamorphic rocks was compared to the theoretical anisotropy calculated from the neutron texture goniometry measurements. The studied rocks range from Pliocene to Pleistocene clays and marls of southern Italy to Palaeozoic mudstones and greywackes of the Rhenohercynian Zone of the Czech Republic.The magnetic anisotropy of studied rocks is predominantly carried by the paramagnetic phyllosilicates, i.e. chlorite and, to the minor extent, micas. The orientation tensors of the phyllosilicate (001) planes were calculated from the neutron goniometry pole figures. Subsequently, the principal values of the theoretical anisotropy were calculated from the principal values of the orientation tensor assuming the various anisotropy values for the phyllosilicates grains. As only the paramagnetic anisotropy should be correlated with the preferred orientation of phyllosilicate phases, the HFA was used for the separation of the paramagnetic and ferromagnetic contribution to the magnetic anisotropy.In most cases, the principal directions of the AMS, high-field paramagnetic component (HFP), and the theoretical anisotropy are subparallel (Fig. 1). No systematic deviation of paramagnetic fabric from whole-rock magnetic fabric can be observed.Quantitative correlations were presented in terms of the standard deviatoric susceptibility, k’, and the difference shape factor, U, expressing anisotropy degree and shape, respectively (Fig. 2). The degrees of the theoretical anisotropy, AMS, and HFP correlate very well (correlation coefficient, R > 0.95) implying nearly the same degree of anisotropy for all the employed methods. The correlations of the shapes of respective anisotropies show more significant scatters. Despite this dispersion, the prolate and oblate shapes still remain well defined.This integrated approach enables to establish a more accurate qualitative and quantitative correlation between the phyllosilicate fabric and magnetic anisotropy and yields valuable information about the meaning of the magnetic fabri

    Detrital zircon fission-track thermochronology and magnetic fabric of the Amagá Formation (Colombia): Intracontinental deformation and exhumation events in the northwestern Andes

    No full text
    New detrital zircon-fission track (ZFT) and magnetic fabric data are presented to constrain the time of deposition, provenance and deformation of the of Lower and Upper members of the Amagá Formation in the Amagá Basin. The Amagá Basin is located in the northern Andes, between the Western and Central Cordilleras of Colombia. The Amagá Formation was deposited in a transpressive geodynamic context and is allegedly synchronous with tectonic events such as the Andean orogeny and the Panama-Choco Block collision with the northwestern South American Plate. Detrital ZFT data confirm an Oligocene age for the Lower Member and a middle-Miocene age for the Upper Member of the Amagá Formation. In addition to constraining the depositional age, the ZFT data presented in this study also reflect Paleocene-Eocene, late to early Oligocene and late to middle Miocene cooling in sediment source areas mainly located in the Central and Western Cordilleras of Colombia. These ages can be associated with regional exhumation events in the central and northern Andes of South America. Collisional stages of the Panama-Choco Block against northwestern South America, subduction of the Farallon-Nazca Plate and strike-slip reactivation periods of the Cauca-Romeral fault system, caused NW-SE compression and NE-SW simple shear in the Amagá Basin. This deformational regime, identified by magnetic fabric data, induces syn- and post-depositional deformation over the Amagá Formation. © 2017 Elsevier B.V
    corecore