531 research outputs found

    December (2013) Res

    Get PDF
    Abstract In vitro plant regeneration and daughter corm formation of saffron (Crocus sativus L.

    Synthetic Data Generation and Defense in Depth Measurement of Web Applications

    Get PDF
    Measuring security controls across multiple layers of defense requires realistic data sets and repeatable experiments. However, data sets that are collected from real users often cannot be freely exchanged due to privacy and regulatory concerns. Synthetic datasets, which can be shared, have in the past had critical flaws or at best been one time collections of data focusing on a single layer or type of data. We present a framework for generating synthetic datasets with normal and attack data for web applications across multiple layers simultaneously. The framework is modular and designed for data to be easily recreated in order to vary parameters and allow for inline testing. We build a prototype data generator using the framework to generate nine datasets with data logged on four layers: network, file accesses, system calls, and database simultaneously. We then test nineteen security controls spanning all four layers to determine their sensitivity to dataset changes, compare performance even across layers, compare synthetic data to real production data, and calculate combined defense in depth performance of sets of controls

    Systematic review of allelic exchange experiments aimed at identifying mutations that confer drug resistance in Mycobacterium tuberculosis

    Get PDF
    First published online: September 20, 2013BACKGROUND: Improving our understanding of the relationship between the genotype and the drug resistance phenotype of Mycobacterium tuberculosis will aid the development of more accurate molecular diagnostics for drug-resistant tuberculosis. Studies that use direct genetic manipulation to identify the mutations that cause M. tuberculosis drug resistance are superior to associational studies in elucidating an individual mutation's contribution to the drug resistance phenotype. METHODS: We systematically reviewed the literature for publications reporting allelic exchange experiments in any of the resistance-associated M. tuberculosis genes. We included studies that introduced single point mutations using specialized linkage transduction or site-directed/in vitro mutagenesis and documented a change in the resistance phenotype. RESULTS: We summarize evidence supporting the causal relationship of 54 different mutations in eight genes (katG, inhA, kasA, embB, embC, rpoB, gyrA and gyrB) and one intergenic region (furA-katG) with resistance to isoniazid, the rifamycins, ethambutol and fluoroquinolones. We observed a significant role for the strain genomic background in modulating the resistance phenotype of 21 of these mutations and found examples of where the same drug resistance mutations caused varying levels of resistance to different members of the same drug class. CONCLUSIONS: This systematic review highlights those mutations that have been shown to causally change phenotypic resistance in M. tuberculosis and brings attention to a notable lack of allelic exchange data for several of the genes known to be associated with drug resistance.This work was supported by the Portuguese Foundation for Science and Technology (FCT) (SFRH/BD/33902/2009 to H. N.-G.), the National Institutes of Health/Fogarty International Center (1K01 TW009213 to K.R.J.), departmental funds of the pulmonary division of Massachusetts General Hospital to M. R. F. and the National Institutes of Health/NIAID (U19 A1076217 to M.B.M.)

    Phenological growth stages of pepino (Solanum muricatum) according to the BBCH scale

    Full text link
    [EN] The pepino (Soianum muricatum) is a solanaceous vegetatively propagated fruit crop of Andean origin. We provide a detailed description of phenological stages because it is of interest for pepino crop management and research. Given the increasing prominence of this crop, and the fact that it morphologically and developmentally variable, and different from other major solanaceous crops, we have developed a pepino specific BBCH (Biologische Bundesanstalt, Bundessortenamt, CHemische Industrie) numerical scale. Nine principal stages are described for germination/rooting, leaf development, formation of side shoots, main shoot elongation, inflorescence emergence, flowering, development of fruit, ripening of fruit and seed, and senescence. Secondary stages (two-digit scale) have been identified for all principal stages. Complementary descriptions using mesostages (three-digit scale) have been developed for leaf development, formation of side shoots, inflorescence emergence, and flowering phenological stages. A description of all phenological stages combined with illustrations is provided. The utility of the BBCH scale has been validated by comparing several traits of agronomic interest at specific developmental stages in a collection of pepino local varieties, modern cultivars and wild relatives. The BBCH scale developed provides uniform criteria for the description, identification and selection of phenological stages of the pepino and will facilitate the management, breeding and conservation of genetic resources of this crop. (C) 2014 Elsevier B.V. All rights reserved.Herraiz García, FJ.; Vilanova Navarro, S.; Plazas Ávila, MDLO.; Gramazio, P.; Andújar, I.; Rodríguez Burruezo, A.; Fita, A.... (2015). Phenological growth stages of pepino (Solanum muricatum) according to the BBCH scale. Scientia Horticulturae. 183:1-7. doi:10.1016/j.scienta.2014.12.008S1718

    A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Mycobacterium tuberculosis is a leading cause of death worldwide. In multi-drug resistant tuberculosis (MDR-TB) infectiousness is frequently prolonged, jeopardizing efforts to control TB. The conventional tuberculosis drug susceptibility tests are sensitive and specific, but they are not rapid. The INNO-LiPA Rif. TB (® )(LiPA) is a commercial line probe assay designed to rapidly detect rifampicin resistance, a marker of MDR-TB. Although LiPA has shown promising results, its overall accuracy has not been systematically evaluated. METHODS: We did a systematic review and meta-analysis to evaluate the accuracy of LiPA for the detection of rifampicin-resistant tuberculosis among culture isolates and clinical specimens. We searched Medline, Embase, Web of Science, BIOSIS, and Google Scholar, and contacted authors, experts and the manufacturer. Fifteen studies met our inclusion criteria. Of these, 11 studies used culture isolates, one used clinical specimens, and three used both. We used a summary receiver operating characteristic (SROC) curve and Q* index to perform meta-analysis and summarize diagnostic accuracy. RESULTS: Twelve of 14 studies that applied LiPA to isolates had sensitivity greater than 95%, and 12 of 14 had specificity of 100%. The four studies that applied LiPA directly to clinical specimens had 100% specificity, and sensitivity that ranged between 80% and 100%. The SROC curve had an area of 0.99 and Q* of 0.97. CONCLUSION: LiPA is a highly sensitive and specific test for the detection of rifampicin resistance in culture isolates. The test appears to have relatively lower sensitivity when used directly on clinical specimens. More evidence is needed before LiPA can be used to detect MDR-TB among populations at risk in clinical practice

    Quantifying the Link between Anatomical Connectivity, Gray Matter Volume and Regional Cerebral Blood Flow: An Integrative MRI Study

    Get PDF
    Background In the graph theoretical analysis of anatomical brain connectivity, the white matter connections between regions of the brain are identified and serve as basis for the assessment of regional connectivity profiles, for example, to locate the hubs of the brain. But regions of the brain can be characterised further with respect to their gray matter volume or resting state perfusion. Local anatomical connectivity, gray matter volume and perfusion are traits of each brain region that are likely to be interdependent, however, particular patterns of systematic covariation have not yet been identified. Methodology/Principal Findings We quantified the covariation of these traits by conducting an integrative MRI study on 23 subjects, utilising a combination of Diffusion Tensor Imaging, Arterial Spin Labeling and anatomical imaging. Based on our hypothesis that local connectivity, gray matter volume and perfusion are linked, we correlated these measures and particularly isolated the covariation of connectivity and perfusion by statistically controlling for gray matter volume. We found significant levels of covariation on the group- and regionwise level, particularly in regions of the Default Brain Mode Network. Conclusions/Significance Connectivity and perfusion are systematically linked throughout a number of brain regions, thus we discuss these results as a starting point for further research on the role of homology in the formation of functional connectivity networks and on how structure/function relationships can manifest in the form of such trait interdependency
    corecore