42 research outputs found

    Charge Pumping in Mesoscopic Systems coupled to a Superconducting Lead

    Full text link
    We derive a general scattering-matrix formula for the pumped current through a mesoscopic region attached to a normal and a superconducting lead. As applications of this result we calculate the current pumped through (i) a pump in a wire, (ii) a quantum dot in the Coulomb blockade regime, and (iii) a ballistic double-barrier junction, all coupled to a superconducting lead. Andreev reflection is shown to enhance the pumped current by up to a factor of 4 in case of equal coupling to the leads. We find that this enhancement can still be further increased for slightly asymmetric coupling.Comment: 5 pages, 2 figure

    Dynamic effect of phase conjugation on wave localization

    Get PDF
    We investigate what would happen to the time dependence of a pulse reflected by a disordered single-mode waveguide, if it is closed at one end not by an ordinary mirror but by a phase-conjugating mirror. We find that the waveguide acts like a virtual cavity with resonance frequency equal to the working frequency omega_0 of the phase-conjugating mirror. The decay in time of the average power spectrum of the reflected pulse is delayed for frequencies near omega_0. In the presence of localization the resonance width is tau_s^{-1}exp(-L/l), with L the length of the waveguide, l the mean free path, and tau_s the scattering time. Inside this frequency range the decay of the average power spectrum is delayed up to times t simeq tau_s exp(L/l).Comment: 10 pages including 2 figure

    Localization in a random phase-conjugating medium

    Full text link
    We theoretically study reflection and transmission of light in a one-dimensional disordered phase-conjugating medium. Using an invariant imbedding approach a Fokker-Planck equation for the distribution of the probe light reflectance and expressions for the average probabilities of reflection and transmission are derived. A new crossover length scale for localization of light is found, which depends on the competition between phase conjugation and disorder. For weak disorder, our analytical results are in good agreement with numerical simulations.Comment: RevTex, 4 pages, 4 figure

    Andreev Bound States and Self-Consistent Gap Functions for SNS and SNSNS Systems

    Get PDF
    Andreev bound states in clean, ballistic SNS and SNSNS junctions are calculated exactly and by using the Andreev approximation (AA). The AA appears to break down for junctions with transverse dimensions chosen such that the motion in the longitudinal direction is very slow. The doubly degenerate states typical for the traveling waves found in the AA are replaced by two standing waves in the exact treatment and the degeneracy is lifted. A multiple-scattering Green's function formalism is used, from which the states are found through the local density of states. The scattering by the interfaces in any layered system of ballistic normal metals and clean superconducting materials is taken into account exactly. The formalism allows, in addition, for a self-consistent determination of the gap function. In the numerical calculations the pairing coupling constant for aluminum is used. Various features of the proximity effect are shown

    Floquet scattering theory of quantum pumps

    Full text link
    We develop the Floquet scattering theory for quantum mechanical pumping in mesoscopic conductors. The nonequilibrium distribution function, the dc charge and heat currents are investigated at arbitrary pumping amplitude and frequency. For mesoscopic samples with discrete spectrum we predict a sign reversal of the pumped current when the pump frequency is equal to the level spacing in the sample. This effect allows to measure the phase of the transmission coefficient through the mesoscopic sample. We discuss the necessary symmetry conditions (both spatial and temporal) for pumping.Comment: 11 pages, 5 figure

    Carbon nanotube-based quantum pump in the presence of superconducting lead

    Get PDF
    Parametric electron pump through superconductor-carbon-nanotube based molecular devices was investigated. It is found that a dc current, which is assisted by resonant Andreev reflection, can be pumped out from such molecular device by a cyclic variation of two gate voltages near the nanotube. The pumped current can be either positive or negative under different system parameters. Due to the Andreev reflection, the pumped current has the double peak structure around the resonant point. The ratio of pumped current of N-SWNT-S system to that of N-SWNT-N system (I^{NS}/I^N) is found to approach four in the weak pumping regime near the resonance when there is exactly one resonant level at Fermi energy inside the energy gap. Numerical results confirm that in the weak pumping regime the pumped current is proportional to the square of the pumping amplitude V_p, but in the strong pumping regime the pumped current has the linear relation with V_p. Our numerical results also predict that pumped current can be obtained more easily by using zigzag tube than by using armchair tube

    Driven coherent oscillations of a single electron spin in a quantum dot

    Full text link
    The ability to control the quantum state of a single electron spin in a quantum dot is at the heart of recent developments towards a scalable spin-based quantum computer. In combination with the recently demonstrated exchange gate between two neighbouring spins, driven coherent single spin rotations would permit universal quantum operations. Here, we report the experimental realization of single electron spin rotations in a double quantum dot. First, we apply a continuous-wave oscillating magnetic field, generated on-chip, and observe electron spin resonance in spin-dependent transport measurements through the two dots. Next, we coherently control the quantum state of the electron spin by applying short bursts of the oscillating magnetic field and observe about eight oscillations of the spin state (so-called Rabi oscillations) during a microsecond burst. These results demonstrate the feasibility of operating single-electron spins in a quantum dot as quantum bits.Comment: Total 25 pages. 11 pages main text, 5 figures, 9 pages supplementary materia

    Report from the EPAA workshop: In vitro ADME in safety testing used by EPAA industry sectors

    Get PDF
    AbstractThere are now numerous in vitro and in silico ADME alternatives to in vivo assays but how do different industries incorporate them into their decision tree approaches for risk assessment, bearing in mind that the chemicals tested are intended for widely varying purposes? The extent of the use of animal tests is mainly driven by regulations or by the lack of a suitable in vitro model. Therefore, what considerations are needed for alternative models and how can they be improved so that they can be used as part of the risk assessment process? To address these issues, the European Partnership for Alternative Approaches to Animal Testing (EPAA) working group on prioritisation, promotion and implementation of the 3Rs research held a workshop in November, 2008 in Duesseldorf, Germany. Participants included different industry sectors such as pharmaceuticals, cosmetics, industrial- and agro-chemicals. This report describes the outcome of the discussions and recommendations (a) to reduce the number of animals used for determining the ADME properties of chemicals and (b) for considerations and actions regarding in vitro and in silico assays. These included: standardisation and promotion of in vitro assays so that they may become accepted by regulators; increased availability of industry in vivo kinetic data for a central database to increase the power of in silico predictions; expansion of the applicability domains of in vitro and in silico tools (which are not necessarily more applicable or even exclusive to one particular sector) and continued collaborations between regulators, academia and industry. A recommended immediate course of action was to establish an expert panel of users, developers and regulators to define the testing scope of models for different chemical classes. It was agreed by all participants that improvement and harmonization of alternative approaches is needed for all sectors and this will most effectively be achieved by stakeholders from different sectors sharing data

    Sequence History Analysis (SHA) : Estimating the Effect of Past Trajectories on an Upcoming Event

    Get PDF
    In this article, we propose an innovative method which is a combination of Sequences Analysis and Event History Analysis. We called this method Sequence History Analysis (SHA). We start by identifying typical past trajectories of individuals over time by using Sequence Analysis. We then estimate the effect of these typical past trajectories on the event under study using discrete-time models. The aim of this approach is to estimate the effect of past trajectories on the chances of experiencing an event. We apply the proposed methodological approach to an original study of the effect of past childhood co-residence structures on the chances of leaving the parental home in Switzerland. The empirical research was based on the LIVES Cohort study, a panel survey that started in autumn 2013 in Switzerland. Analyses show that it is not only the occurrence of an event that increases the risk of experiencing another event, but also the order in which various states occurred. What is more, it seems that two features have a significant influence on departure from the parental home: the co-residence structures and the arrival or departure of siblings from the parental home

    Platelet-rich plasma in orthopedic therapy: a comparative systematic review of clinical and experimental data in equine and human musculoskeletal lesions

    Get PDF
    corecore