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Dynamic effect of phase conjugation on wave localization
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We investigate what would happen to the time dependence of a pulse leflected by a disordered smgle mode
waveguide if U is closed at one end, not by an ordmaiy minor, but by a phase-conjugating innrer We find that
the waveguide acts like a virtual cavity with resonance fiequency equal to the working frequency ω0 of the
phase conjugating minor The decay in time of the average power spectrum of the reflected pulse is delayed for
fiequcncies near ω0 In the piesence of localization the resonance width is T~'exp(—L/l}, wilh L the length of
the waveguide, / the mean free path, and r, the scattenng time Inside this frequency ränge the decay of the
aveiage power spectrum is delayed up to times f=T,exp(£//)
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I. INTRODUCTION

The leflection of a wave pulse by a random medmm pro
vides insight into the dynamics of localization '~4 The re-
flected amphtude contams rapid fluctuations over a bioad
lange of frequencies, with a slowly decaymg envelope The
power spectrum α (ω, i) characteuzes the decay in time t of
the envelope at frequency ω In an mfinitely long waveguide
(with N propagatmg modes), the signature of localization,5 6

2 foi (D

is a quadiatic decay of the disoidei-averaged power spectrum
( a ) , which sets in aftei Λ'2 scattenng times rs

The decay (1) still holds over a bioad ränge of times if the
length L of the waveguide is finite, but much gieatei than the
localization length ξ=(Ν+1)1 (with I — CT^ the mean free
path) What changes is that foi exponentially large times t
> rsex.p(LJl) the quadratic decay becomes more rapid
ccexp(—constxlirf) This is the celebiated log-normal
tail ~u We may assume that the finite length of the wave-
guide is reahzed by terminatmg one end by a perfectly re-
flecting mirror, so that the total reflected power is unchanged

In this paper we ask the question what happens if mstead
of such a normal mirror one would use a phase-conjugatmg
mirror1 2 1 3 The interplay of multiple scattermg by disorder
and optical phase conjugation is a nch problem even in the
static case 6 Here we show that the dynamical aspects are
particularly stiiking Basically, the disordered waveguide is
turned into a virtual cavity with a resonance frequency o>o set
by the phase-conjugatmg mirror

We piesent a detailed analytical and numencal calculation
for the single-mode case ( A f = l ) For times t^>rs we find
that α(ω,ί) has decayed almost completely except m a nai-
low frequency ränge <*T~lexp(—L/l) aiound ω0 In this fie-
quency ränge the decay is delayed up to times t
= Tsexp(L/7), aftei which a log-normal decay sets m The
exponentially laige difference m time scales foi the decay
neai ω0 and away fiom ω0 is a signature of localization

II. FORMULATION OF THE PROBLEM

A. Scattering theory

A scattenng matiix formulation of the problem of com
bmed elastic scattenng by disoidei and melastic scattenng

by a phase-conjugatmg minoi was developed by Paasschens
et al15 We summaiize the basic equaüons for the case of a
smgle propagatmg mode in the geometry shown m Fig l A
single-mode waveguide is closed at one end (λ = 0) by either
a noimal minor 01 by a phase-conjugatmg mirror Elastic
scattenng in the waveguide is due to random disordei in the
legion 0<x<L For simplicity we consider a smgle polar-
ization, so that we can use a scalai wave equation

The phase-conjugatmg minoi consists of a four-wave
mixmg cell 1213 Two countei propagatmg beams at frequency
ω0 mix with an incident beam at frequency ω0 + ω to yield a
letioieflected beam at fiequency ω0-ω (for ω<ω0) The
mixmg is due to the presence m the cell of a medmm with a
large third-oidei nonlmear susceptibihty (e g , BaTiO3 or
CS2)

Foi x>L the wave amphtude at frequencies ω± = ω0

± ω is an mcoming or outgoing plane wave,

(2a)

(2b)

Here k± = k0±a}/c is the wave number at frequency ω± ,
with k0 the wave number at ω0 and c = d(a/dk the group
velocity The transverse wave profile ψ±(γ,ζ) is normalized
such that the wave canies unit flux

The leflection matnx lelates the mcoming and outgoing
wave amphtudes, according to

O

o o

o o

υ

x=0 x=L

FIG l The geometiy undei mvestigation consists of a smgle
mode waveguide with a mirror at χ = 0 It can be a normal mirror 01
a phase-conjugatmg mirror There aie randomly positioned ob-
stacles between x = Q and \ = L
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(3)

The reflection coefficients aie complex numbeis that depend
on ω They satisfy the symmetiy lelations

Γί_(ω) = Γ+ + (-ω), ;ί+(ω) = / + _ ( - ω ) (4)

If theie is only leflection at the minoi and no disorder, then
one has simply

r+ +

ι - +

for a normal mirroi and

0

(5)

(6)

foi a phase conjugating mmoi opeiating m the legime of
ideal letioieflection (We will assume this legime in what
follows)

We wish to deteimine how the reflection coefficients are
modified by the elastic scatteung by the disordei Foi this we
need the elastic scatteung matnx

r t'

t r' (7)

The reflection coefficients r,r' and tiansmission coefficients
t,t' descnbe reflection and transmission from the left or fiom
the nght of a segment of a disoidered waveguide of length L
The matnx S is umtaiy and Symmetrie (hence t = t ' ) The
basis for S is chosen such that r=r ' = 0, t(±(u) = elk±L in
the absence of disorder The relationship between the coeffi-
cients m Eqs (3) and (7) is15

(8a)

j . ( f -.\ ·,+{ , \Τ Λ ι- !* ( f ·,\·νΙ , \\~\~'\·+'% ( , <.\ /OW\Γ-\ v"'/ — lt(0))\L — r ( 0))i\UJ) \ l \ ÜJ), v ÖD/

for a phase-conjugating miiTor For a noimal mirror theie is
no mixing of frequencies and one has simply

r + + (w) = r ' (<u) - f (a>) [ l +τ(ω)Υιί(ω}, (9a)

Γ + _(ω)=0 (9b)

In each case the matnx of leflection coefficients is unitary, so

Η(ω)|2+ (10)

B. Power spectrum

We assume that a pulse &8(t) is incident at x = L [cone-
spondmg to φι"=1 foi all ω in Eq (2)] The leflected wave
at χ = L has amphtude

+ [ / * _ ( ω ) + /·*+(ω)]β"
Β'} (11)

(We have suppiessed the tiansveise cooidmates y,z foi sim
phcity of notation) Usmg the symmetiy lelations (4), we can
lewute this äs

r=
-»"o'

άω

(12)

The time conelatoi of the leflected wave becomes

άω
' —<a)t iia't'

(13)

plus terms that oscillate on a time scale 1/ω0 We make the
lotating wave appioximation and neglect these lapidly oscil
latmg teims The powei spectium a of the reflected wave is
obtamed by a Fouuei transfoim

α(ω,ί)= i/f'cos[(w0+w)i']Mo u t(i)«o u t(f + i')

άδω

2ττ
, — ι δωία(ω,δω), (14)

where we have mtroduced the correlator in the frequency
domam

(15)

Integiation of the power spectrum over time yields, usmg
also Eq (10),

c°
J -

dt α(

(16)

For a normal mirror r+_(<u) = 0 and α(ω,δω = 0) = j, ex-
pressmg flux conseivation Foi the phase-conjugating mmor
tliere is melastic scattermg, which mixes the fiequency com-
ponents ω and — ω The constramt of flux conservation then
takes the foi m

(17)

This follows fiom the symmetiy lelations (4) and the unitar-
ity of the leflection matiix Equation (17) implies that α(ω
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III RANDOM SCATTERERS

We assume weak disoidei, meanmg that the mean free
path / is much laiger than the wavelength 2-7r/k0 The mul
tiple scattenng by disoidei localizes the wave with localiza
tion length equal to 2l We considei sepaiately the case of a
phase conjugating mmoi and of a noimal miiroi

A Phase-conjugatmg rrurroi

We fiist concentiate on the degeneiate icgime of small
fiequency shift ω and will simphfy the expiessions by put-
tmg ω = 0 fiom the statt We note that; + + (0) = 0, t +_(0)
= — i , äs follows from Eq (8) and unitaiity of the scattenng
matnx (7) Usmg Eqs (8) and (15), we amve at the powei
spectium in the fiequency domain

Χ[ί2(δω),4·(-δω)-ιί(δω)ίί:(-δω)]}

(18)

The scattenng amphtudes have the polar decomposition /

= V#expO<7), r' = V#expO<9'), and t = i^i-R&\p[{i(0
+ 0')], with R,0,0' real functions of frequency The phase
Θ' may be assumed to be statistically mdependent of R
( ± δω) , θ( ± δω) , and umformly distnbuted m (0,2 ττ) (This
is the Wignei conjecture, proven foi chaotic scattenng m
Ref 17 ) In this way only the last teim in Eq (18) survives
the disorder average ( },

4(α(0,δω)) =

where we

ί(δω)ί*(-δω)

l -r* (-δω)Γ(δω)

have defined Ζηι

m=o
Ζα, (19)

— δω)

The moments Zm satisfy the Berezmskn recursion
relation1819

m-l- 2Z,„) + (2m + Zm)

+ 2zr,(S<u(2m+l)Zm (20)

with Ts = l/c the scattenng time (The mean free path / ac-
counts only for backscattermg, so that the scattenng time in
a kinetic equation would equal j TS ) The initial condition is
Zm(L = 0) = δ,η o In Appendix A we denve an analytical ιέ
sult for (α(Ο,δω)) m the small frequency ränge 1η(1/τΛ<5ω)
>L//>1 Itreads

(21)

The initial decay is deteimmed by the contiibuüons of the
poles at k = — £ ι , — j i , ~ f / ,
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FIG 2 Aveiage power spectrum for reflection by a disordered
waveguide (L/l =12 3) connected to a phase conjugating minoi
[solid curves, from Eq (21)] or a normal mirror [dashed curves
from Eq (28)] The data points follow from a numencal Simulation
There is no adjustable parameter m the companson Notice the
much fastei frequency dependence for the phase conjugating minoi
(top panels), compared to the normal muror (bottom panels)

+ Ο(δω3) (22)

The icsult (21) is plotted m Fig 2 for L/Z =12 3 We
compare with the data from a numencal solution of the wave
equation on a two-dimensional lattice, usmg the method of
recursive Green functions 20 (The method of Simulation is
the same äs in Ref 15, and we refer to that paper for a more
detailed descnption) The agreement with the analytical
curves is quite good, without any adjustable parameter The
δω dependence of (α(0,<5ω)) for large L/l occurs on an
exponentially small scale, within the ränge of vahdity of Eq
(21)

A Founer tiansform of Eq (21) yields the average power
spectrum m the time domain for ln(i/Ts)>L//>l, with the
result

<f l (0 , f )> = i^3/2(L/Z) -3/2exp( -L/41) r~ mt~ m

Xln(4i/rJexp[-(//4L)ln2(4i/T0)] (23)

The leading logarithmic asymptote of the decay is log-
normal, °cexp[— (//4L)ln2/], characteiistic of anomalously lo-
cahzed states 7~"

These lesults aie calculated foi ω = 0 and lemam vahd äs
long äs ω^τ~'6χρ(— L/l) This can be checked by perfoim-
mg a Tayloi expansion in ω of Eq (8), usmg the polai de
composition foi ι ,ι ' ,t We still have ;+ + (ω) = 0 and
/ + _ ( ω) «= — ι äs long äs ω d θ/αω< l— R In 01 der of mag-
nitude this conesponds to τΛω^εχρ(— L/l) This is the de
geneiate legime Foi r sw>exp(— L/l) the power spectium
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α(ω,δω) is dommated by the teim r'(w + δω)ι '*(ω) The
decay of (α(ω,δω)) then occurs in the lange τ^δω^ l The
same is true foi the noimal minoi, which we considei m the
next subsection The piesence of the minoi is now only of
impoitance foi very small δω [ln(l/rs<5&))äL//?>l], when
α(ω,δω)κ>\ For τ^ω^Ι the aveiage power spectium
(α(ω,δω)) in the ränge ln(l/Ts<5w)S>L// is the same äs that
for a noimal minoi, leadmg to exactly the same log-noimal
decay m the time domam This is pioven in Appendix B

B. Normal mirror

Foi compauson we discuss the known results foi a disoi
deied waveguide connected to a noimal minoi mstead of a
phase-conjugatmg miiTor Since r + _ = 0, one has fiom Eq
(15)

R i (24)

satisfy the

(25)

The quantities Rm = ([r+ +

Beiezinskn lecuision lelation18 19

The initial condition is Äm(L = 0) = l foi all m The solution
foi ln(l/Tj(?ci))>L/Z is known21 and gives the average powei
spectrum

.ir
TTJ-o

(26)

with K a Bessel function [The result (26) does not require
L//S>1, in contrast to Eq (21) ] The initial decay is domi-
nated by the contnbutions of the poles at fc= — j i , — f t ,

(ω,«5ω)) = 7 +JJT, ω3)
(27)

Companson of Eqs (26) and (27) with Eqs (21) and (22)
shows that the decay is much slower for a normal mirroi than
foi a phase-conjugatmg mnror The characteiistic fiequency
scale is largei by a factor exp(2L/Z) So Eq (26) is not suf-
ficient to describe the entire decay of (α(ω,δω)), which oc-
cuis m the ränge τ,,δω&Ι The decay m this ränge is ob-
tamed by puttmg the left-hand side of Eq (25) equal to zeio,
leadmg to5 22

{α(ω,δω)) = j — \ι exp(
(28)

wheie Ei is the exponential mtegial function The ränge of
vahdityofEq (28) is ln(l/r^w)«L/i and L//I>1 The ic-

sult (28) is plotted in Fig 2 and is seen to agree well with
data fiom the numencal Simulation

Foi ln(f/T,)<^L// (and L/l$>l) one can peifoim the Fouiier
tiansfoim of Eq (28) to get the aveiage powei spectium in
the time domam5

(29)

It decays quadiatically <xf 2 foi t/rs>l Foi exponentially
long times ί^>τΛεχρ(Δ//), one should mstead peifoim the
Founei tiansfoim of Eq (26) One finds that the quadiatic
decay ciosses ovei to a log-noimal decay <*exp
[ - (//4L)lnY|,7 the same äs foi the phase-conjugatmg minoi

IV. CONCLUSION

We have shown that the mterplay of phase conjugation
and multiple scatteimg by disordei leads to a diastic slowmg
down of the decay in time t of the average powei specti um
( α ( ω , ί ) ) of frequency components ω of a reflected pulse
The slowmg down exists in a nanow fiequency lange aiound
the chaiactenstic frequency ω0 of the phase-conjugatmg mn
101 (degeneiate legime) If ω is outside this fiequency lange
(nondegenerate legime), the powei spectium decays äs lap-
idly äs foi a noimal minoi

The slowmg down can be mteipieted m terms of a long-
hved icsonance at ω0, which is induced m the landom me
dmm by the phase-conjugatmg minoi This resonance is
known fiom mvestigations of the static scattenng
properties15 The resonance is exponentially nanow,
a-r~ 1exp(—L/l), m the presence of locahzation (with rs the
scattenng time, L the length of the disoidered icgion, and /
the mean free path) The resonance leads to the exponentially
large differences in time scales for the decay of the power
spectrum in the degenerate legime and the nondegenerate
legime

We have restiicted the calculation in this paper to the case
of a smgle propagatmg mode, when a complete analytical
theory could be provided We expect that the N-mode case is
qualitatively similar An exponentially large difference in
time scales <*exp(L/£) foi the decay in the degenerate and
nondegeneiate legimes provided the medium is localized [L
laige compaied to the locahzation length ξ=(Ν+1)1] In
the diffusive legime we expect (α(ω,ί)) to decay on the time
scale of the diffusion time r s(L//)2 The diffeience with the
nondegenerate legime (or a noimal mmor) is then a factor
(L//) 2 mstead of exponentially laige

In final analysis we see that phase conjugation gieatly
magnifies the diffeience m the dynamics with and without
locahzation Indeed, if theie is no phase-conjugatmg mmor
the mam diffeience is a decay <xt~V2 m the diffusive legime
veisus i"2 m the localized legime,6 but the chaiactenstic
time scale lemams the same (set by the scattenng time rs)
We theiefoie suggest that phase conjugation might be a
piomismg tool in the ongoing expeiimental seaich foi dy
namical featmes of locahzation 23 "4
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APPENDIX A: POWER SPECTRUM IN THE FREQUENCY
DOMAIN

We show how to anive at the lesult (21) staitmg fiom the
lecuision lelation (20) We assume ln(l/r^w)SL//>l It is
convement to woik with the Laplace transfoim

rdL
—exp(-XL//)Z,„(L) (AI)

o i

of the moments Z,„ The lecuision lelation (20) tiansfoims
into

(A2)-,8(2m+l)Zm(X),

with β— — 2ιτ^δω
Foi small \ß\ and laige m tlus equation can be wntten äs

a diffeiential equation

m + 2m
dZ(m,\)

dm
2/3/n)Z(m,X) =

(A3)

wheie m is now consideied to be a contmuous vanable The
solution of Eq (A3) is

) = C(\,ß)(ßm) -1/2ι (A4)

The factoi C ( K , ß ) is deteimmed by matchmg to the solution
of Eq (A2) foi ßm—^0, /n— >°°, which has been calculated
m Ref 25 The lesult is

Xexp[|

To obtain the powei spectium (19) we leplace the sum
ovei m by an mtegiation, with the lesult

(A6)

Theie aie poles at \ = n(n + 1), « = 0,1,2, , and a brauch
cut startmg at λ = — 1/4 When domg the inveise Laplace
tiansform we put the mtegiation path in between the poles
and the bianch cut The final result is given by Eq (21) The
leason that we need the condition L//8>1 is that Eqs (A4)
and (A5) aie only correct foi ;«§>! The fiist teims in the
sum E™ = 0Zm aie impoitant foi L/is l, but can be neglected
foi L/i>l

APPENDIX B: EQUIVALENCE OF NORMAL AND PHASE-CONJUGATING MIRROR IN THE
NONDEGENERATE REGIME

We show that the aveiage powei spectrum (α(ω,δω)) in the lange lri(l/T^a))>L/l is the same for a normal mirroi and a
phase-conjugatmg mmor m the regime τ5ω>1

First we consider the normal rmnor One can wiite (α(ω, δω)) in terms of R, θ, Θ' , usmg the polai decomposition and Eqs
(9) and (15) Only two teims survive the average over Θ,

(Bl)

The fiist teim is also piesent for the phase-conjugatmg mmor, so we only need to consider the second term This term can be
wntten äs

(Β2)

wheie we have aveiaged ovei θ m the last Step
Now we considei the phase-conjugating mmoi in the legime τ^ω> l In that legime the phase θ(ω) is mdependent of the

phase θ( — ω) The powei spectium α(ω,δω) can agam be wutten m teims of Κ,θ,θ' [Eqs (8) and (15)] Only thiee teims
suivive the aveiage ovei θ(±ω),θ'(ω),

174203-5



K J H van BEMMEL M TITOV, AND C W J BEENAKKER PHYSICAL REVIEW B 65 174203

ί~(ω+δω)ι ( — ω — δω)ί~*(ω)ι ( — ω)

ί(ω+δω)ί·*(-ω-δω)ίι(ω)ί(-ω) '

:[1-ι"(-ω-δω)ι(ω+δω)][1-ι(-ω)ι ( ω ) ] /
(Β3)

The first term is also present foi the noimal miuoi Foi r, ω> l , ί( ω) is independent of /( - ω) The second term is then much

larger than the thud teim because of the laige fluctuations m the locahzed regime (L^>1) The second teim can also be wutten

äs

/ ί2(ω+δω)ι-ί(-ω-δω)(2-ι·(ω)ι(-ω) \

= 2 {ί2(ω+δω)ί2*(ω)ιη(ω+δω)ι'"·'(ω)>ι"+ι(-ω)ι η ~ { · ι * - -(-ω-δω))

= 2 (ΐ2(ω+δω)ί2+(ω)ιη(ω+δω)>η*(ω))(ιη+ι(-ω),'ι+[ (Β4)

Companson with Eq (Β2) for a normal minor shows that the two expressions are the same äs long äs we can icplace

(;"+ I( — w)r"+ l i J ( — ω— δω)) by l for the lelevant teims in the summation over n It is now convement to wnte /"(ω

+ δω)ιη*(ω)=Ε"(ω)[1 — €(ω,δω)]η The average over (r(w),/ (ω + δω),ί(ω),ί(ω + δω)} is dommated by configuiations

wheie the transmittance Tis laige Foi small δω this conesponds to configurations wheie l —Κ(ω) and \€(ω,δω)\ aie much

larger than typical values of these quantities Foi these dommating configurations the number of lelevant terms in the

summation ovei n is lelatively small and for these lelatively small n we can replace {/"+ 1(-ω);' ! + 1 ' ( — ω—δω)) by l We

therefoie conclude that for small δω, the average power spectrum {α(ω,δω)) is the same äs foi a noimal minor The above

aigument bieaks down if {/" + 1(~o>)r' I+1^( — ω— δω)) staits to deviate fiom l foi the lelevant terms in the summation This

is the case for
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