36 research outputs found

    Assessing recent trends in high-latitude Southern Hemisphere surface climate

    Get PDF
    Understanding the causes of recent climatic trends and variability in the high-latitude Southern Hemisphere is hampered by a short instrumental record. Here, we analyse recent atmosphere, surface ocean and sea-ice observations in this region and assess their trends in the context of palaeoclimate records and climate model simulations. Over the 36-year satellite era, significant linear trends in annual mean sea-ice extent, surface temperature and sea-level pressure are superimposed on large interannual to decadal variability. However, most observed trends are not unusual when compared with Antarctic paleoclimate records of the past two centuries. With the exception of the positive trend in the Southern Annular Mode, climate model simulations that include anthropogenic forcing are not compatible with the observed trends. This suggests that natural variability likely overwhelms the forced response in the observations, but the models may not fully represent this natural variability or may overestimate the magnitude of the forced response

    History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience

    Full text link

    Targeted Lipidomic Analysis of Myoblasts by GC-MS and LC-MS/MS.

    No full text
    Part of the Methods in Molecular Biology book series (MIMB, volume 1668)International audienceLipids represent ∌10% of the cell dry mass and play essential roles in membrane composition and physical properties, energy storage, and signaling pathways. In the developing or the regenerating skeletal muscle, modifications in the content or the flipping between leaflets of membrane lipid components can modulate the fusion capacity of myoblasts, thus constituting one of the regulatory mechanisms underlying myofiber growth. Recently, few genes controlling these qualitative and quantitative modifications have started to be unraveled. The precise functional characterization of these genes requires both qualitative and quantitative evaluations of a global lipid profile. Here, we describe a lipidomic protocol using mass spectrometry, allowing assessing the content of fatty acids, glycerophospholipids, and cholesterol in the routinely used C2C12 mouse myoblast cell line, or in primary cultures of mouse myoblasts
    corecore