107 research outputs found

    A High Reliability Gas-driven Helium Cryogenic Centrifugal Compressor

    Get PDF
    A helium cryogenic compressor was developed and tested in real conditions in 1996. The achieved objective was to compress 0.018 kg/s Helium at 4 K @ 1000 Pa (10 mbar) up to 3000 Pa (30 mbar). This project was an opportunity to develop and test an interesting new concept in view of future needs. The main features of this new specific technology are described. Particular attention is paid to the gas bearing supported rotor and to the pneumatic driver. Trade off between existing technologies and the present work are presented with special stress on the bearing system and the driver. The advantages are discussed, essentially focused on life time and high reliability without maintenance as well as non pollution characteristic. Practical operational modes are also described together with the experimental performances of the compressor. The article concludes with a brief outlook of future work

    A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model

    Get PDF
    The fully nonlinear and weakly dispersive Green-Naghdi model for shallow water waves of large amplitude is studied. The original model is first recast under a new formulation more suitable for numerical resolution. An hybrid finite volume and finite difference splitting approach is then proposed. The hyperbolic part of the equations is handled with a high-order finite volume scheme allowing for breaking waves and dry areas. The dispersive part is treated with a classical finite difference approach. Extensive numerical validations are then performed in one horizontal dimension, relying both on analytical solutions and experimental data. The results show that our approach gives a good account of all the processes of wave transformation in coastal areas: shoaling, wave breaking and run-up

    Consideration of the Mechanisms for Tidal Bore Formation in an Idealized Planform Geometry

    Get PDF
    A tidal bore is a positive wave traveling upstream along the estuary of a river, generated by a relatively rapid rise of the tide, often enhanced by the funneling shape of the estuary. The swell produced by the tide grows and its front steepens as the flooding tide advances inland, promoting the formation of a sharp front wave, i.e., the tidal bore. Because of the many mechanisms and conditions involved in the process, it is difficult to formulate an effective criterion to predict the bore formation. In this preliminary analysis, aimed at bringing out the main processes and parameters that control tidal bore formation, the degrees of freedom of the problem are largely reduced by considering a rectangular channel of constant width with uniform flow, forced downstream by rising the water level at a constant rate. The framework used in this study is extremely simple, yet the problem is still complex and the solution is far from being trivial. From the results of numerical simulations, three distinctive behaviors emerged related to conditions in which a tidal bore forms, a tidal bore does not form, and a weak bore forms; the latter has a weakly steep front and after the bore formed it rapidly vanishes. Based on these behaviors, some criteria to predict the bore formation are proposed and discussed. The more effective criterion, suitably rearranged, is checked against data from real estuaries and the predictions are found to compare favorably with the available data

    ITER LHe Plants Parallel Operation

    Get PDF
    AbstractThe ITER Cryogenic System includes three identical liquid helium (LHe) plants, with a total average cooling capacity equivalent to 75kW at 4.5K.The LHe plants provide the 4.5 K cooling power to the magnets and cryopumps. They are designed to operate in parallel and to handle heavy load variations.In this proceedingwe will describe the presentstatusof the ITER LHe plants with emphasis on i) the project schedule, ii) the plantscharacteristics/layout and iii) the basic principles and control strategies for a stable operation of the three LHe plants in parallel

    Barred-beach morphological control on infragravity motion

    Get PDF
    A conceptual analysis of the coupling between bars and infragravity waves is performed combining laboratory experiments and numerical modeling. Experiments are carried out in a wave flume with a barred profile. The Boussinesq fully-nonlinear model SERR1D is validated with the laboratory data and a sensitivity analysis is performed next to study the influence on the infragravity wave dynamics of bar amplitude and location, and swash zone slope. A novel technique of incident and reflected motions separation that conserves temporal characteristics is applied. We observe that changing bar characteristics induces substantial variations in trapped energy. Interestingly, a modification of swash zone slope has a large influence on the reflected component, controlling amplitude and phase time-lag, and consequently on the resonant pattern. Variations of trapped infragravity energy induced by changes of swash zone slope reach 25 %. These changes in infragravity pattern consequently affect short-wave dynamics by modifying the breakpoint location and the breaking intensity. Our conceptual investigation suggests the existence of a morphological feedback through the action of evolving morphology on infragravity structures which modulates the action of short-waves on the morphology itself

    The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms

    Get PDF
    © 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]

    Molecular Evolution of Ultraspiracle Protein (USP/RXR) in Insects

    Get PDF
    Ultraspiracle protein/retinoid X receptor (USP/RXR) is a nuclear receptor and transcription factor which is an essential component of a heterodimeric receptor complex with the ecdysone receptor (EcR). In insects this complex binds ecdysteroids and plays an important role in the regulation of growth, development, metamorphosis and reproduction. In some holometabolous insects, including Lepidoptera and Diptera, USP/RXR is thought to have experienced several important shifts in function. These include the acquisition of novel ligand-binding properties and an expanded dimerization interface with EcR. In light of these recent hypotheses, we implemented codon-based likelihood methods to investigate if the proposed shifts in function are reflected in changes in site-specific evolutionary rates across functional and structural motifs in insect USP/RXR sequences, and if there is any evidence for positive selection at functionally important sites. Our results reveal evidence of positive selection acting on sites within the loop connecting helices H1 and H3, the ligand-binding pocket, and the dimer interface in the holometabolous lineage leading to the Lepidoptera/Diptera/Trichoptera. Similar analyses conducted using EcR sequences did not indicate positive selection. However, analyses allowing for variation across sites demonstrated elevated non-synonymous/synonymous rate ratios (dN/dS), suggesting relaxed constraint, within the dimerization interface of both USP/RXR and EcR as well as within the coactivator binding groove and helix H12 of USP/RXR. Since the above methods are based on the assumption that dS is constant among sites, we also used more recent models which relax this assumption and obtained results consistent with traditional random-sites models. Overall our findings support the evolution of novel function in USP/RXR of more derived holometabolous insects, and are consistent with shifts in structure and function which may have increased USP/RXR reliance on EcR for cofactor recruitment. Moreover, these findings raise important questions regarding hypotheses which suggest the independent activation of USP/RXR by its own ligand

    Molecular Evidence for a Functional Ecdysone Signaling System in Brugia malayi

    Get PDF
    Filarial parasites such as Brugia malayi and Onchocerca volvulus are the causative agents of the tropical diseases lymphatic filariasis and onchocerciasis, which infect 150 million people, mainly in Africa and Southeast Asia. Filarial nematodes have a complex life cycle that involves transmission and development within both mammalian and insect hosts. The successful completion of the life cycle includes four molts, two of which are triggered upon transmission from one host to the other, human and mosquito, respectively. Elucidation of the molecular mechanisms involved in the molting processes in filarial nematodes may yield a new set of targets for drug intervention. In insects and other arthropods molting transitions are regulated by the steroid hormone ecdysone that interacts with a specialized hormone receptor composed of two different proteins belonging to the family of nuclear receptors. We have cloned from B. malayi two members of the nuclear receptor family that show many sequence and biochemical properties consistent with the ecdysone receptor of insects. This finding represents the first report of a functional ecdysone receptor homolog in nematodes. We have also established a transgenic hormone induction assay in B. malayi that can be used to discover ecdysone responsive genes and potentially lead to screening assays for active compounds for pharmaceutical development

    STK35L1 Associates with Nuclear Actin and Regulates Cell Cycle and Migration of Endothelial Cells

    Get PDF
    BACKGROUND: Migration and proliferation of vascular endothelial cells are essential for repair of injured endothelium and angiogenesis. Cyclins, cyclin-dependent kinases (CDKs), and cyclin-dependent kinase inhibitors play an important role in vascular tissue injury and wound healing. Previous studies suggest a link between the cell cycle and cell migration: cells present in the G(1) phase have the highest potential to migrate. The molecular mechanism linking these two processes is not understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we explored the function of STK35L1, a novel Ser/Thr kinase, localized in the nucleus and nucleolus of endothelial cells. Molecular biological analysis identified a bipartite nuclear localization signal, and nucleolar localization sequences in the N-terminal part of STK35L1. Nuclear actin was identified as a novel binding partner of STK35L1. A class III PDZ binding domains motif was identified in STK35L1 that mediated its interaction with actin. Depletion of STK35L1 by siRNA lead to an accelerated G(1) to S phase transition after serum-stimulation of endothelial cells indicating an inhibitory role of the kinase in G(1) to S phase progression. Cell cycle specific genes array analysis revealed that one gene was prominently downregulated (8.8 fold) in STK35L1 silenced cells: CDKN2A alpha transcript, which codes for p16(INK4a) leading to G(1) arrest by inhibition of CDK4/6. Moreover in endothelial cells seeded on Matrigel, STK35L1 expression was rapidly upregulated, and silencing of STK35L1 drastically inhibited endothelial sprouting that is required for angiogenesis. Furthermore, STK35L1 depletion profoundly impaired endothelial cell migration in two wound healing assays. CONCLUSION/SIGNIFICANCE: The results indicate that by regulating CDKN2A and inhibiting G1- to S-phase transition STK35L1 may act as a central kinase linking the cell cycle and migration of endothelial cells. The interaction of STK35L1 with nuclear actin might be critical in the regulation of these fundamental endothelial functions
    corecore