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Abstract

A tidal bore is a positive wave traveling upstream along the estuary of a river, generated

by a relatively rapid rise of the tide, often enhanced by the funneling shape of the estuary.

The swell produced by the tide grows and its front steepens as the flooding tide advances

inland, promoting the formation of a sharp front wave, that is, the tidal bore. Because of

the many mechanisms and conditions involved in the process, it is difficult to formulate

an effective criterion to predict the bore formation. In this preliminary analysis, aimed at

bringing out the main processes and parameters that control tidal bore formation, the de-

grees of freedom of the problem are largely reduced by considering a rectangular channel

of constant width with uniform flow, forced downstream by rising the water level at a con-

stant rate. The framework used in this study is extremely simple, yet the problem is still

complex and the solution is far from being trivial. From the results of numerical simula-

tions, three distinctive behaviors emerged related to conditions in which a tidal bore forms,

a tidal bore does not form, and a weak bore forms; the latter has a weakly steep front and

after the bore formed it rapidly vanishes. Based on these behaviors, some criteria to pre-

dict the bore formation are proposed and discussed. The more effective criterion, suitably

rearranged, is checked against data from real estuaries and the predictions are found to

compare favorably with the available data.

Keywords: Breaking and undular bores; Environmental hydraulics; Estuary; River;

Shallow water modeling; Tidal bore

1 Introduction

A tidal bore is a positive wave traveling upstream along the estuary of a river, gen-

erated by a relatively rapid rise of the tide, often enhanced by the funneling shape of the

estuary. The swell produced by the tide grows and its front steepens as the flooding tide

advances inland promoting the formation of a sharp front wave, that is, the tidal bore.

Freshwater river flow velocity and depth, as well as bed slope and friction, also affect the

process [Bartsch-Winkler and Lynch, 1988; Chanson, 2011a; Shi et al., 2014].

Tidal bores play a significant role on the ecology, morphodynamics, and sedimentary

structures of an estuary [Chen et al., 1990; Donnelly and Chanson, 2005; Greb and Archer,

2007; Fan et al., 2012, 2014; Fielding and Joeckel, 2015; Martinius and Gowland, 2011;

Reungoat et al., 2017; Tessier et al., 2017], as well as on the social activities that take

place in this environment. Turbulent mixing and dispersion are enhanced at the passage of

a tidal bore [Koch and Chanson, 2009; Pan and Huang, 2010; Reungoat et al., 2015; Simp-

son et al., 2004; Tu and Fan, 2017], and significant bed erosion and sediment resuspension

take place [Keevil et al., 2015; Khezri and Chanson, 2012a; Wang and Pan, 2018]; the bed

material is then aerated being suspended and advected upstream with the bore, and rede-

posited on the tide’s retreat [Chanson et al., 2011; Furgerot et al., 2016; Lubin et al., 2010;

Reungoat et al., 2014]. This process has a positive and significant influence on the breed-

ing of many small, estuarine invertebrates such as shrimps, mollusks and worms, which in

turn feed several species of fish and provide important feeding grounds for wading birds

and estuarine wildlife [for example, Chanson, 2011b]. Tidal bores are also a major tourist

attraction and provide opportunity for recreational activities such as surfing.

Given their importance and appeal, tidal bores have long been studied theoretically,

numerically and experimentally with laboratory and field investigations. However, despite

the many studies, and possibly because of the many factors which contribute to determin-

ing whether a bore forms or not, the prediction of their occurrence remains a challenge

[Hoitink and Jay, 2016].

According to Chanson [2011a], a tidal bore occurs when tidal range exceeds 4-6 m

and the flood tide is confined within a narrow, funnel shaped estuary. However, in addition
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to being rather qualitative, field observations do not always support this criterion. Tidal

bores are observed, for example, in the Indus River [Bartsch-Winkler and Lynch, 1988]

with a spring tidal range of just approximately 2.0 m [Eisma et al., 1988] whereas, in the

Mezen River, no bore is observed despite the large tidal range of 7.8 m [Dolgopolova,

2013].

Based on a scaling analysis of the one-dimensional shallow water equations, Bon-

neton et al. [2016] showed that the occurrence of tidal bore is controlled by two dimen-

sionless parameters, namely the nonlinearity and the friction parameter. Using the data of

21 estuaries, among which 8 are characterized by the presence of tidal bores, they showed

that tidal bores occur when the nonlinearity parameter is greater than a critical value,

which is an increasing function of the friction parameter; in the space of these two pa-

rameters, a curve separating the region in which conditions are such that a bore can form

from the region where bores cannot occur has been drawn by eye (details about this cri-

terion are shortly given in the text). However, this criterion lacks a theoretical basis; the

problem of setting down a theoretical model, or just a physically based, conceptual model

to predict the occurrence of tidal bore is still open. This is possibly because the occur-

rence of tidal bore is governed by so many factors, as listed above, and none of them pre-

vails over others.

Therefore, there is a clear need of basic studies that look at the kernel of the phe-

nomenon at hand by starting from very simple and schematic geometry and flow condi-

tions, and gradually building up an understanding of why and how a tidal bore occurs and

develops, by accounting for an increasing number of factors affecting tidal bore formation.

This need has motivated the present work.

In this paper, we approach the problem from a phenomenological point of view. We

numerically simulate the tidal propagation in a schematic channel and search for all behav-

iors that are possibly distinctive of conditions for which either a bore is observed to form

or no bores occur. In order to reduce the degrees of freedom of the problem, the frame-

work within which we study the formation and development of a tidal bore is extremely

simple. In particular, we consider a rectangular channel of constant width, in uniform sub-

critical flow, in which the downstream water level is raised at a constant rate. Accordingly,

this basic study is just a first step toward a better understanding of the mechanisms pro-

moting the tidal bore formation, and not a concluding work.

Section 2 introduces the methods and shortly describes the numerical model used

in the investigation. The results of the numerical simulations are discussed in Sect. 3;

more precisely, Sect. 3.1 gives the criterion adopted to identify, from the results, if the

free surface wave produced by the rising of the downstream level has evolved toward a

well formed bore or not; in Sect. 3.2, some criteria to predict the occurrence of a tidal

bore, on the basis of external parameters, are proposed and discussed; in Sect. 4, the best

performing criterion is then extended to predict tidal bore occurrence in real estuaries, and

the predictions of the criterion are compared with the available field data. Conclusions are

summarized in Sect. 5.

2 Materials and methods

2.1 The idealized framework adopted in the study

Among the many mechanisms and conditions that affect the process of tidal bore

formation, the more relevant are i) the rate of tidal level rise [for example, Chanson, 2011b;

Bonneton et al., 2016], ii) the characteristics of the incoming flow, typically flow depth

and velocity [for example, Cai et al., 2014; Filippini et al., 2018], iii) the funneling shape

of the estuary that deforms the tidal wave by steepening the rising limb, hence enhancing

the rate of level rise [for example, Friedrichs and Aubrey, 1994; Lanzoni and Seminara,

1998; Savenije, 2012; Toffolon et al., 2006], iv) the channel bed profile that also affects the
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Figure 1. Schematic of the surge propagating upstream against a uniform flow of depth Y0 and velocity

U0, with notations. ∆Y is the bore front height, x f denotes the position of the foot of the front, that is, the

most upstream cross section where undisturbed water level is affected by the propagating tide; xU denotes the

position of the cross section where the flow reverses, that is, the velocity is zero.

characteristics of the propagating tidal wave [for example, Cai et al., 2012; Savenije et al.,

2008; Shi et al., 2014], and v) the irregular shape of cross-sections, which may introduce

additional dissipative processes, alter the wave celerity, and produce reflections and/or dis-

tortions of the bore front [for example, Bonneton et al., 2011; Pan et al., 2007; Shi et al.,

2014; Treske, 1994].

Among these mechanisms and processes, some are necessary for a bore to form (for

example, the rise of downstream water level), whereas others just act to promote and en-

hance the bore formation [for example, the funneling shape, Filippini et al., 2018]. In fact,

tidal bores can also form in straight channels (for example, the tidal bore on the River

Winster, UK) and are often studied using straight flumes with rectangular or trapezoidal

cross-section, constant width and bed slope [Chanson, 2009, 2010; Hayami et al., 1955;

Koch and Chanson, 2008, 2009; Favre, 1935; Prüser and Zielke, 1994; Treske, 1994]. This

is the reason that these estuary features are not considered in this first step study.

In order to reduce the degrees of freedom of the problem, the framework within

which we study the formation and development of a tidal bore is extremely simple. The

present study considers a rectangular channel of constant width, and assumes the bottom

slope, s, small enough so that cosθ≈1, sinθ≈tanθ=s, with θ the angle of the channel bed

to the horizontal (Fig. 1). The incoming flow is assumed uniform with water depth Y0 and

bulk velocity U0. The rate of tidal level rise is assumed constant so that the downstream

level, h, is imposed to increase linearly in time from h=Y0 at t=0. Although the framework

is very simple and schematic, the problem is actually rather involved and its solution is far

from being trivial.

In the numerical simulations, the rate of downstream level rise is chosen based on

typical semi-diurnal tides. More precisely, we considered the rising rate of level of a si-

nusoidal tide, averaged over a time interval of about one hour around the instant in which

the rise rate is maximum. We find dh/dt≈3TRω0, with TR the tidal range and ω0 the tidal

angular frequency (ω0=2π/T , with T the tidal period). For this reason, considering the

typical tidal range occurring in real estuaries where tidal bores form, we used a rate of

downstream level rise of 1-4 m/h. Since the funneling shape of real estuaries acts to de-

form the tidal wave thus enhancing the rate of level rise during of the flooding tide [for

example, Bonneton et al., 2015; Friedrichs, 2010; Savenije, 2012], in some cases we also

considered a level rise rate of 6 m/h.

In addition, most of simulations last less than 1.0-2.0 hours; only in few cases the

simulations are protracted up to 4.0 hours. Conditions used in the numerical investigation

are summarized in Table 1.
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Table 1. Summary of conditions used in the numerical investigation.

Parameter Symbol Unit Value

bottom slope s (-) 4.4 · 10−6 − 5.0 · 10−4

uniform flow depth Y0 (m) 0.27 − 6.71

uniform flow velocity U0 (m/s) 0.06 − 0.94

uniform flow Froude number F0 (-) 0.015 − 0.29

small wave celerity c0 (m/s) 1.6 − 8.1

rate of sea level rise dh/dta (m/h) 1.0 − 4.0

aFew simulations use a rate of sea level rise of 6 m/h.

2.2 The numerical model

The problem schematized in Fig. 1 is essentially one-dimensional; nonetheless, we

use an available and well tested two-dimensional hydrodynamic model [Defina et al., 2008a,b;

Viero et al., 2013], also in view of using the same model to simulate the 2D flow in a con-

verging estuary. The Godunov-type, shock-capturing scheme solves the depth-averaged

shallow water equations, written in conservative vector form, on unstructured triangu-

lar grids based on the finite volume technique. Bottom elevations are defined at the grid

nodes and are assumed to vary linearly within each element of the mesh; the second-order

accurate description of the channel bed allow to properly deal with sloping channel [Beg-

nudelli and Sanders, 2006; Defina and Viero, 2010]. In order to avoid the generation of

unphysical discontinuities at cell faces even in the case of smooth flows, data at cell faces

are reconstructed by selecting either primitive or conservative variables according to the

local Froude number, according to the adaptive approach proposed by Begnudelli et al.

[2008]. First-order adaptive schemes, which utilize a second-order accurate description of

bottom elevations, were shown to be robust, efficient, and accurate for many engineering

applications [Begnudelli et al., 2008]. Moreover, the Local Time Stepping method pro-

posed by Sanders [2008] is used to improve the model performance in terms of computa-

tional cost.

Simulations are performed over a rectangular domain having a length in the range

10 km<L<40 km depending on the distance traveled by the surge before vanishing [Viero

et al., 2017] or before turning into a quasi-stationary hydraulic jump [Defina et al., 2008c].

Preliminary simulations are carried out by progressively doubling the grid resolution until

the maximum relative difference, in terms of both water depth and bore position, was less

than 10−3. By this procedure, the typical size of grid elements is found to be 2.5 m in the

flow direction; in some cases, the size is reduced to 1.0 m. Since the problem is essen-

tially one-dimensional, the domain width can be arbitrarily chosen. In the simulation, the

domain width is set approximately equal to the longitudinal size of grid elements to make

their shape as regular as possible, thus increasing model accuracy and performance. The

2D finite volume model, forced into 1D condition as in the present study, has been vali-

dated against analytical solutions derived from Toro [2000] and Toro [2001]; the results

are reported as supporting information.

3 Results and discussion

The illustration of the numerical results is split into two parts. In the first part (Sect. 3.1),

the results of the simulations are analyzed and the behavior of the swell wave propagating

upstream into the channel is studied in order to find a criterion allowing to establish if a

bore has actually formed or not. In the second part (Sect. 3.2), we look for, and propose

some criteria that allow to predict when a bore forms and develops, based on easily mea-

–5–



Manuscript in Press at Water Resources Research. https://doi.org/10.1029/2018WR022937

surable external parameters. In addition, we compare the prediction of the most effective

criterion, among those proposed, with the available data from real estuaries.

Most of the results are presented in nondimensional form. Vertical lengths are scaled

by the flow depth, Y0, of the incoming uniform flow, whereas horizontal lengths are scaled

by the ratio Y0/s, (the bottom slope is here introduced to make nondimensional verti-

cal and horizontal lengths comparable, given that in shallow flows horizontal lengths are

much greater than vertical lengths). Velocity is scaled by the small wave celerity c0=
√
gY0,

where g is gravity, and time is scaled by the ratio between the horizontal length scale and

the small wave celerity, τ=Y0/(c0s) [see Viero et al., 2017]. Nondimensional variables are

denoted with an asterisk (for example, nondimensional time is t∗=t/τ, and the nondimen-

sional water depth at the outlet is h∗ = h/Y0).

3.1 Analysis of the numerical results

A criterion is needed to identify, from the results of the numerical simulations, if the

free surface wave, produced by the rising of the downstream level, has evolved toward a

well formed a bore or not.

Based on field measurements by Bonneton et al. [2015], Bonneton et al. [2016] as-

sume that, in their numerical simulations, a bore has formed when the maximum free sur-

face steepness, in time and in space, goes greater than the threshold value of 0.001. The

criterion looks reasonable and it is partly supported by the results of present numerical

simulations; however, our study suggests that a suitable threshold value should depend on

the Froude number of the incoming flow.

A more physically based criterion, to ascertain from the results of the numerical

simulations whether a tidal bore has formed or not, is proposed. To illustrate the criterion,

some preliminary discussion of the results of present numerical simulations is needed.

In order to describe the evolution of the perturbed flow field toward the possible for-

mation of a bore, we focus on specific characteristics of the swell propagating upstream

in the channel, and identify three characteristic cross sections, i) the foot of the front,

that is, the most upstream cross section where undisturbed water level is affected by the

propagating tide; this cross section moves with a velocity a f = dx f /dt, x f being its po-

sition; ii) the cross section where the steepness of the water surface attains a maximum;

this cross section moves with a velocity as = dxs/dt, xs being its position; in addition,

the maximum free surface steepness is denoted with S(t)=max {−dh/dx} and its max-

imum value in time is denoted with Smax ; and iii) the cross section where the flow re-

verses, that is, where the bulk flow velocity is zero; this cross section moves with a veloc-

ity aU = dxU/dt, xU being its position (see Fig. 1).

Importantly, numerical simulations show that, in the presence of a developing or a

well formed bore, the following constraint holds

xU (t) ≤ xs(t) ≤ x f (t) (1)

Accordingly, we can define two positive distances, ∆xU f = x f − xU and ∆xUs = xs − xU ,

for which the condition ∆xU f ≥ ∆xUs holds.

Three different behaviors are observed. The first one is shown in Fig. 2. During the

early stage of the process, the tidal levels propagate upstream and the foot of the front has

approximately a constant velocity a f ≈ a0 = c0 − U0. The flow at the most downstream

section (that is, the channel outlet) gradually reduces its velocity while it goes to zero at

time t∗
U0

(see Fig. 2a). From that moment on, the cross section where the flow reverses

penetrates the channel at the nearly constant velocity aU that is greater than a f so that,

from time t∗
U0

on, the distance ∆xU f reduces (Fig. 2b). At t∗ = t∗
1

(t∗
1
≈ 0.32 in Fig. 2a)
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the flow in the two sections start interacting; the foot of the front sharply increases its ve-

locity while the cross section where the flow reverses slows down until, at t∗ = t∗
2

(t∗
2
≈

0.4 in Fig. 2a), both sections start moving with approximately the same velocity and the

distance ∆xU f , becomes negligibly small (Fig. 2b). From t∗ = t∗
1

on, the front steepness

starts growing fast and it gradually reaches its maximum value (Smax ≈ 0.05 in Fig. 3b).

When this behavior occurs we assume that a bore actually forms.
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Figure 2. Results of numerical simulation for the case s=5·10−5, F0=0.23, τ=7085 s, dh/dt=2 m/h; a) ve-

locities of cross section where the flow reverses, aU , and foot of the bore, a f as they vary with time; b) dis-

tances ∆xU f and ∆xUs , and maximum free surface steepness, S(t∗), as they vary with time; c) water surface

profiles at different times.

A second, typical behavior is shown in the upper panels of Fig. 3. In this case,

when t∗ > t∗
U0

, the velocity aU turns out to be smaller then a f (Fig. 3a). As a conse-

quence, the distance ∆xU f increases with time, and the cross section where the flow re-

verses does not approach the foot of the developing bore (Fig. 3b). The maximum free

surface slope grows to values smaller than or comparable to the bed slope and then de-

creases (Fig. 3b). Water surface profiles shown in Fig. 3c confirm that the swell front is

weakly sloping while propagating in the channel. In this case, we assume that a bore does

not form.

In the third case, an intermediate behavior is observed (lower panels of Fig. 3). In

this case the early stage of the process is similar to that shown in Fig. 2, leading to the

bore formation. However, from time t∗ = t∗
2

(t∗
2
≈ 0.5 in Fig. 3d) the cross section where

the flow reverses slows down and its velocity remains below that of the foot of the front.

Therefore, from t∗ = t∗
2

on, both the distances ∆xU f and ∆xUs increase (Fig. 3e) pointing

out that the front weakens. This is confirmed by the behavior of S(t) shown in Fig. 3e and

by the free surface profiles of Fig. 3f. A further interesting occurrence occurs at t∗ ≈ 1.28

(Fig. 3e), when the distance ∆xU f sharply reduces thus implying that the bore front def-

initely vanished. This is even more evident in Fig. 4 where the free surface steepness,

−dh/dx, is plotted as a function of the longitudinal position, x∗, at different times.
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Figure 3. (a–c) Same as in Fig. 2 for the case s=2·10−4, F0=0.19, τ=1890 s, dh/dt=2 m/h; (d–f) Same as

in Fig. 2 for the case s=6.9·10−5, τ=6060 s, F0=0.14, dh/dt=3 m/h.

In this third case, a bore actually forms but its fate is to rapidly vanish. The front

height (Fig. 3f) and steepness (Fig. 4) quickly grows to relatively large values and then

decreases until a wavefront cannot be recognized anymore. In this case we state that a

weak bore forms.

Overall, the results of the numerical simulations suggest that there are three distinc-

tive behaviors typical of conditions in which a bore or weak bore occurs, or no bore forms
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at all. In the following, bore occurrence is identified from the results of the numerical

simulations according to these behaviors.
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Figure 5. Maximum value of the free surface steepness, Smax , as a function of the Froude number of the

incoming flow. White and black circles denote conditions in which bores form and do not form, respectively;

crosses denote conditions in which weak bores form.

Figure 5 shows the maximum value of the free surface steepness, Smax , as a func-

tion of the Froude number of the incoming flow and it actually compares the proposed

criterion to identify, from the results of the numerical simulations, if a bore forms or not,

with that proposed by Bonneton et al. [2015]; open and full symbols denote conditions

in which a bore forms and it does not form, respectively; crosses denote conditions in

which a weak bore forms. When Smax is greater than 0.1%, bores actually form, although

some of them are weak bores. However, the behavior of points plotted in Fig. 5 suggests

that the threshold steepness for bore formation should depend on F0 and, in particular, it

should increase with F0 increasing [Chanson, 2009].
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3.2 Possible criteria to predict the occurrence of tidal bore

Based on deductive reasoning and with reference to the schematic flow configura-

tion of Fig. 1, different possible criteria are proposed in order to predict the occurrence of

tidal bore as a function of suitable external parameters. Each criterion is then checked

against the results of numerical simulations. To this aim, the probability of success is

computed as the ratio of the number of times the prediction of the criterion is correct to

the total number of numerical simulations. However, given the relatively small number

of simulated conditions, the chance of success alone is not considered effective enough.

Therefore, when the criterion fails, we also check if conditions are close to the threshold

boundary; if not, the criterion is rejected even if the chance of success is relatively large.

Criterion #1. We preliminarily show that the rate of tidal level rise alone does not

allow to predict if a bore can form. This is apparent in Fig. 6 where dh/dt is plotted

against the Froude number F0.

On average, the probability of occurrence of conditions conducive to bore formation

increases with dh/dt increasing. However, the distribution of points plotted in Fig. 6 does

not show any particular trend.

0.0 0.05 0.10 0.15 0.20 0.25F
0

dh/dt 

(m/h)

0

1

2

3

4

Figure 6. Rate of downstream level rise as a function of the Froude number of the incoming flow. Symbols

are the same as in Fig. 5.

Criterion #2. From the analysis of the numerical results it emerges that, for either a

weak or strong bore to form, the velocity aU0 must be greater than a f . As a first approxi-

mation, when t ≈ tU0, we can assume that a f ≈ a0 so that the criterion for bore formation

reads

a∗U0 ≥ a∗0 (2)

in which the velocities aU0 and a0 are scaled with c0.

Figure 7 shows that this criterion has a good prediction capacity. If the cases in

which a weak bore forms are excluded, the criterion has a 98.6% success rate. The main

drawback of this criterion stems from the difficulty of predicting aU0.

Criterion #3. Close inspection of the computed free surface profiles, and as they

evolve with time, highlighted the relative importance of the growth rate of downstream

level, which, to some extent, controls the flow rate, and hence the water volumes, enter-
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Figure 7. Non dimensional velocity a∗
U0

as a function of a∗
0
; symbols are the same as in Fig. 5. Also

plotted is the line a∗
U0
= a∗

0
.

ing the channel from the sea, with respect to the speed of the wavefront, which, if large,

promote the spreading of these volumes over a longer channel reach. If dh∗/dt∗ is large

compared to a∗
f
, the water from the sea is compressed within a short space and it acts to

push the front upstream in order to find more room, this way promoting the formation of

a bore. On the contrary, if dh∗/dt∗ is small compared to a∗
f
, the small volumes of water

from the sea are spread over a longer channel reach so that the free surface elevation gen-

tly reduces from the sea to the foot of the wavefront and the bore does not form.

As above, during the early stage of the process, a f ≈ a0 can be reasonably assumed;

accordingly, the ratio (dh∗/dt∗)/a∗
0

could profitably be used to distinguish whether a bore

forms or not. According to this criterion, a bore forms if

dh∗

dt∗
≥ α1 a∗0 (3)

with α1 a suitable threshold value.

A satisfactory result is obtained for α1=2.8 (see Fig. 8). If the cases in which a

weak bore develops are excluded, the criterion has a success rate of 91.5 %. However,

it can be observed that the line dh∗/dt∗ = 2.8 a∗
0

separating conditions for the formation

and nonformation of a bore does not follow, qualitatively, the way in which the plotted

points actually distribute; more precisely, it seems that the threshold value should grow

with growing a∗
0
. Moreover, when a∗

0
is greater than approximately 0.95, that is, when F0

is smaller than 0.05, the criterion actually fails. For these reasons, this criterion is unsatis-

factory, and it is rejected.

Criterion #4. The results of the numerical simulations highlight the presence of two

competing processes. The first, just described above, is controlled by the ratio (dh∗/dt∗)/a∗
0
;

the second stems from the observation that, when the incoming flow is subcritical, the fate

of a positive surge is to gradually reduce its height and velocity until vanishing [Viero

et al., 2017].
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Figure 8. The results of numerical simulations plotted on the (a∗
0
, dh∗/dt∗) diagram; symbols are the same

as in Fig. 5. The solid curve is the line dh∗/dt∗ = 2.8 a∗
0
.

For a problem similar to the present one, that is, for the case of a positive surge gen-

erated in a sloping channel by the instantaneous closure of a downstream gate, Viero et al.

[2017] showed that the distance, LM , traveled by the surge before vanishing is

L∗
M = LM

s
Y0

=

2F0

1 − F2
0

(4)

The process studied by Viero et al. [2017] is a bit different from the present one

since in their case the flow never reverses; nonetheless, we speculate that the ratio 1/L∗
M

can be used to measure the intensity of the mechanisms that act against the bore formation

or to weaken the bore once formed.

Accordingly, the ratio between (dh∗/dt∗)/a∗
0

and 1/L∗
M

should measure the propen-

sity for a bore to form; we then assume that a bore forms when this ratio is greater than a

threshold value, α2

L∗
M

a∗
0

dh∗

dt∗
≥ α2 (5)

With Eq. (4), the above condition is rearranged to read

dh∗

dt∗
≥ α2

(1 − F0)(1 − F2
0
)

2F0

(6)

With α2 = 1, this condition is found to hold rather well (see Fig. 9). If the cases in

which a weak bore forms are excluded, the criterion has a 100% success rate. In addition,

the curve separating the region where conditions are such that a bore is predicted to form,

from the region where no bore can establish, has a behavior that qualitatively follows the

way in which the plotted points distribute.

The two dashed lines of Fig. 9 are obtained from Eq. (6) with α2=1.2 (upper curve)

and α2=0.65 (lower curve), and they enclose a region on the (F0, dh∗/dt∗) diagram that

contains most of conditions for a weak bore to form. This occurrence strengthens the pro-

posed criterion.
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Figure 9. dh∗/dt∗ as a function of the Froude number of the incoming flow; symbols are the same as in

Fig. 5. The solid curve is given by Eq. (6) with α2=1; the two dashed lines are given by Eq. (6) with α2=1.2

(upper curve), and α2=0.65 (lower curve).

3.3 The height of the bore front

In the frame reference moving with the bore and when neglecting the front accel-

eration and the local inertia, the continuity and momentum equation across the wavefront

allow to estimate the front height and celerity as a function of the Froude number of the

incoming flow and of the ratio UD/U0, with UD the flow velocity at the head of the front,

positive upstream [Chanson, 2004; Henderson, 1966]

a
√
gY0

= −F0 +

√

1 +
3

2

∆Y
Y0

+

1

2

∆Y2

Y2
0

(7)

UD

U0

(

1 +
∆Y
Y0

)

=

a
U0

∆Y
Y0

− 1 (8)

Combining the above equations yields a relationship between the front height and

flow velocity at the head of the front; in particular, we note that, for a given F0, the front

height increases with UD increasing.

From the results of the numerical simulations when a bore or a weak bore forms,

the maximum front height is extracted. When the bore is weak, the front steepness is not

much greater than the free surface steepness behind the front; therefore, in these cases, the

estimated front height is affected by an error that is however smaller than 10%.

With the proposed criterion for predicting bore occurrence, the more conditions are

above the threshold for tidal bore formation, the more the bore that forms is strong and

high. Therefore, from Eq. (6), the parameter

1

A
dh∗

dt∗
(9)

with A = (1 − F0)(1 − F2
0
)/2F0, is likely to control the tidal bore height. In addition,

when the Froude number of the incoming flow is relatively small, the relative bore front
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height ∆Y/Y0 given by Eqs. (7) and (8) nearly linearly increases with F0 (see the inset

of Fig. 10). For these reasons, the computed height of the bore fronts are plotted in the

(dh∗/Adt∗, ∆Y/F0Y0) plane (Fig. 10). Also plotted in Fig. 10 are the limits dh∗/Adt∗ = α2

with α2 = 0.65 and α2 = 1.2 that, as a first approximation, enclose the region where weak

bores occur.

In addition, three gray stripes are drawn in Fig. 10 that denote the regions contain-

ing all possible values for ∆Y/(Y0F0) when UD = 0, UD = U0, UD = 3U0 and F0 is

allowed to vary between zero (lower boundary of each stripe) and 0.5 (upper boundary of

each stripe).
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Figure 10. Relative bore front height scaled by F0 as a function of (1/A)dh∗/dt∗. Symbols are the same as

in Fig. 5. The dashed line is from Eq. (9); the regions where a bore, a weak bore or no bore forms are also in-

dicated. The three gray stripes denote the regions containing all possible values for ∆Y/(Y0F0) when UD = 0,

UD = U0, UD = 3U0 and F0 is allowed to vary between zero (lower boundary of each stripe) and 0.5 (upper

boundary of each stripe). The inset shows the relative front height, ∆Y/Y0, as a function of F0, for three values

of the relative flow velocity at the front head, UD/U0.

It is worth noting that most of weak bores have a relative front height, scaled by F0,

that is smaller than one; hence, the velocity UD , at the front head, is negative (that is, di-

rected downstream). These conditions are similar to those of a positive surge propagating

upstream against a subcritical uniform flow, generated by the instantaneous closure of a

downstream gate; in this case, the fate of the surge is to vanish [Viero et al., 2017]. This

occurrence actually agrees with present results when a weak bore forms.

On the contrary, strong tidal bores, with a large relative front height, have a positive

(that is, directed upstream) velocity at the head; this velocity is also often much greater

than U0. The reversal of bulk flow velocity across the front was found in several field

studies [Chanson et al., 2011; Hoitink and Jay, 2016; Pan et al., 2007; Reungoat et al.,

2014; Simpson et al., 2004; Wolanski et al., 2004; Xie and Pan, 2013; Zhu et al., 2012].

Interestingly, the inversion was found to occur almost immediately after the bore passage

[Furgerot et al., 2016; Pan et al., 2007], and also significantly after the bore passage [Re-

ungoat et al., 2014], thus confirming that the cross section where the velocity reverses

(section “U”in Fig. 1) moves either close to, or significantly behind, the bore, as we found

in our numerical simulations.
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In the case of a positive surge generated by the rapid closure of a downstream gate

in a laboratory flume with uniform flow, the bulk flow velocity downstream the wave-

front does not reverse [Viero et al., 2017]. Experimental and numerical analyses showed

some transient flow reversal next to the bed and close to the bore passage [Docherty and

Chanson, 2012; Khezri and Chanson, 2012b; Koch and Chanson, 2009; Leng and Chan-

son, 2017a,b; Lubin et al., 2010]; however, this occurrence is relatively weak and related to

flow separation and recirculation due to the upward deviation of the main flow at the foot

of the bore [Liu et al., 2015; Lubin et al., 2010]. In the case of a tidal bore, in which also

the bulk flow velocity at the head of the front actually reverses [Furgerot et al., 2016; Ma-

soud et al., 2015; Simpson et al., 2004], the reverse flow is typically much stronger. This is

a very important aspect that must be considered in the experimental study of the charac-

teristics of a tidal bore front, in order to properly assess the enhanced mixing and erosion

processes related to the flow reversal at the bore passage. Flow reversal was accounted for

in few laboratory experiments [Huang et al., 2013; Rousseaux et al., 2016] where, however,

the implications of bore passage were not assessed.

It is interesting to observe, in Fig. 10, that points representing the numerical solution

arrange, with some scatter, along the dashed line expressed by

1

F0

∆Y
Y0

= 0.9
1

A
dh∗

dt∗
(10)

4 Application of the present criterion to real estuaries

The schematic framework used in the present study to assess the formation of tidal

bore, differs from that of real estuaries mainly because, in the present numerical simu-

lations, the geometry of the channel has not a funnel shape, water levels imposed at the

sea do not vary gradually as for a real tide, and the incoming flow is not uniform. How-

ever, although important, these aspects may not dramatically affect the conclusions drawn

above, at least from a qualitative point of view.

Accordingly, it is interesting to see if the more effective criterion (that is, criterion

#4) is (or is far from being) able to predict the occurrence of tidal bores in real estuaries.

To this purpose, we rewrite the proposed criterion using the parameters suggested by Bon-

neton et al. [2016], and use the data available in the literature to classify alluvial estuaries

in terms of tidal bore occurrence (see Table 2).

Based on a scaling analysis of the one-dimensional shallow water equations, Bon-

neton et al. [2016] showed that the global tidal dynamics is governed by three dimension-

less parameters, namely i) the dimensionless tidal amplitude

ǫ0 = A0/D0

with A0 = TR/2 the tide amplitude at the estuary mouth, TR being the tidal range, and D0

some characteristic water depth; ii) the friction parameter

φ0 = Cf 0Lω0/D0

with Cf 0 a characteristic and constant friction coefficient, and Lω0 =
√
gD0/ω0 the fric-

tionless tidal-wave length scale [for example, Friedrichs, 2010; Lanzoni and Seminara,

1998; Savenije, 2012], ω0 being the tidal angular frequency; iii) the convergence ratio

δ0 = Lω0/Lb0

where Lb0, which is referred to as the convergence length, is given by Lb0 = −B/(dB/dx),
with B the channel width. Bonneton et al. [2016] observed that bore formation is weakly
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affected by the convergence ratio δ0; they speculate that this is possibly because most of

real estuaries all have approximately the same δ0 When plotting the available data in the

(φ0, ǫ0) plane, Bonneton et al. [2016] found that a curve can be drawn that definitely sep-

arates a region in which conditions are such that tidal bores occur from a region where

they do not occur.

Table 2. Flow, tidal and geometric properties of real estuaries.

# Estuary tidal TR D0 U0 F0 Lb0 cf 0 T ǫ0 φ0 ∆Y References

bore (m) (m) (m/s) (km) (h) (m)

1 Chao Phya no 2.4 7.2 0.54a 0.06 109.0 .0039 24.0 0.167 63.0 − b

2 Columbia no 2.0 10.0 1.0 0.10 25.0 .0031 12.4 0.100 21.7 − c

3 Conwy no 4.8 3.0 0.5 0.09 6.3 .0051 12.5 0.800 66.1 − c

4 Corantijin no 2.0 6.5 0.64a 0.08 48.0 .0032 12.3 0.154 28.2 − b

5 Daly yes 6.0 10.0 0.97a 0.10 27.0 .0025 12.0 0.300 17.0 1.5 d,e

6 Delaware no 1.3 5.8 0.6 0.08 40.0 .0021 12.5 0.110 19.6 − c

7 Elbe no 4.0 10.0 1.0 0.10 42.0 .0025 12.4 0.200 17.6 − c

8 Fly yes 5.1 15.0 0.8 0.07 n/a .0036 12.0 0.169 8.2 2.0 d, f

9 Gironde yes 4.6 10.0 1.0 0.10 44.0 .0031 12.4 0.230 21.7 1.5 c,g

10 Hooghly yes 4.2 5.9 1.0a 0.13 25.5 .0015 12.0 0.356 13.3 1.5 c,d,g,h,i

11 Trent yes 6.4 12.0 0.85a 0.08 25.0 .0030 12.0 0.267 18.6 1.5 d,h

12 Limpopo no 1.1 7.0 0.36a 0.04 50.0 .0032 12.0 0.079 27.1 − b

13 Mae Klong no 2.0 5.2 0.7a 0.10 155.0 .0035 12.3 0.192 33.9 − b

14 Maputo no 2.8 3.6 0.65a 0.11 16.0 .0027 12.3 0.389 31.8 − b

15 Ord yes 5.0 4.0 2.0 0.32 15.2 .0025 12.0 0.625 26.9 1.2 c, j

16 Pungue yes 6.3 3.5 1.24a 0.21 21.0 .0039 12.3 0.900 46.7 0.7 b,k

17 Qiantang yes 6.5 10.0 2.0 0.20 40.0 .0015 12.0 0.325 10.2 3.0 d,g,h

18 Scheldt no 4.0 10.5 0.64a 0.06 28.0 .0032 12.3 0.190 22.2 − b

19 Severn yes 6.0 15.0 1.5 0.12 41.0 .0025 12.4 0.200 14.4 1.5 c,d,g

20 Tha Chin no 2.0 5.3 0.45a 0.06 87.0 .0048 24.0 0.189 90.6 − b

21 Thames no 4.0 8.5 0.6 0.07 25.0 .0050 12.3 0.235 38.1 − c

Symbols are defined in the text. The chosen estuaries are those reported by Bonneton et al. [2016];

also included are the data of the Fly River estuary. TR is the tidal range, D0, U0, F0, and Cf 0 are

the characteristic water depth, velocity, Froude number, and friction coefficient, respectively, Lb0

is the convergence length, T is the tidal period, ǫ0 is the dimensionless tidal amplitude, φ0 is the

friction parameter, and ∆Y is the bore height. aEstimated according to Eq. (28) in Toffolon et al.

[2006]; bSavenije [2012]; cLanzoni and Seminara [1998]; dBartsch-Winkler and Lynch [1988];
eBonneton et al. [2016]; f Canestrelli et al. [2010] and Canestrelli et al. [2014]; gDolgopolova

[2013]; hBonneton et al. [2015]; iShri and Chugh [1961]; jKawanisi et al. [2017]; kChanson

[2011a].

Bonneton et al. [2016] performed a large number of numerical simulations to study

the propagation of a semidiurnal, sinusoidal tide in a schematic convergent channel of

constant depth and exponentially decreasing width. The zero-flux condition is imposed

at the inland end of the channel. Using the results of these simulations they could draw

isocontour lines of Smax in the (φ0, ǫ0) plane. Interestingly, the shape of these isocontour

lines, when Smax is in the range 0.0005-0.001, is very similar to the curve Bonneton et al.

[2016] drew by eye, separating a region in which conditions are such that tidal bores oc-

cur from a region where they do not occur. However, as previously observed (see Fig. 5),

the use of a threshold value for Smax does not allow establishing if a bore has actually

formed or not.
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In order to compare the prediction of our criterion with the available data for real

estuaries, we rewrite condition (6) using the parameters suggested by Bonneton et al. [2015],

that is, φ0 and ǫ0.

When the incoming flow is uniform, the friction factor is proportional to the ratio

s/F2
0
, so that we can write

φ0 =
Cf 0Lω0

D0

∝ sLω0

F2
0

D0

=

s
√
gD0

ω0F2
0

D0

=

sc0

ω0F2
0

Y0

(11)

where Y0 is assumed as the characteristic water depth D0.

The rate of tidal level rise can be expressed as proportional to the tidal range times

the tidal angular frequency, that is

dh
dt

∝ TRω0 (12)

Therefore, the non dimensional rate of tidal level rise can be written as

dh∗

dt∗
=

d(h/Y0)
d(t/τ) =

1

c0s
dh
dt

∝ TRω0

c0s
=

2Y0ω0

c0s
ǫ0 (13)

The above equation, with Eq. (11), can be rearranged to read

dh∗

dt∗
= k

2ǫ0

φ0F2
0

(14)

where k is a calibration factor.

The criterion expressed by condition (6), with dh∗/dt∗ given by Eq. (14), reads

k
2ǫ0

φ0F2
0

≥ α2

(1 − F0)(1 − F2
0
)

2F0

(15)

that is rewritten as

ǫ0

φ0

≥ α2

(1 − F0)(1 − F2
0
)

4k
F0 (16)

Figure 11a shows where points denoting conditions when a bore forms (open sym-

bols) and does not form (full symbols) locate in the (F0, ǫ0/φ0) diagram. The thick plot-

ted curve is given by Eq. (16) when k=2.1 and α2=1. Also plotted in Fig. 11a are the

curves determined by assuming α2=1.2 (upper dashed curve) and α2=0.65 (lower dashed

curve).

The available experimental data do not distinguish strong from weak bores; however,

it is interesting to observe that points pertaining to estuaries where very strong bores are

observed, locate well above the plotted curves.

Finally, we also verify if Eq. 10, suitably rearranged, can predict with some ac-

curacy the front height of bores occurring in real estuaries using the few available data

listed in Table 2. It is worth pointing out that, for some of the listed estuaries, more than

one value of the bore front height is reported in the literature. For the Qiantang estuary,

∆Y=1 − 3 m is given in Bartsch-Winkler and Lynch [1988] and ∆Y=4 m is reported in

Dolgopolova [2013], we use the value ∆Y=3 m that is in between the two; for the Hoo-

gly estuary, ∆Y=2 m is given in Bartsch-Winkler and Lynch [1988] whereas Dolgopolova
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Figure 11. a) Data of real estuaries (as reported in Table 2) where bores do form (white circles) and do not

form (black circles) are plotted in the (F0, ǫ0/φ0) diagram. The solid curve is given by Eq. (16) with α2=1; the

two dashed lines are given by Eq. (16) with α2=1.2 (upper curve) and α2=0.65 (lower curve). b) Comparison

between the relative wavefront height, computed with Eq. 17 and k=1.2, and that measured in real estuaries

and reported in Table 2. The perfect agreement line is also shown.

[2013] gives the range ∆Y=1 − 3 m and Shri and Chugh [1961] give the value ∆Y=1.5 m,

the latter is the value used in the present analysis.

With Eq. (14) for dh∗/dt∗, recalling the expression for A, and replacing Y0 with D0,

Eq. (10) can be rearranged to read

∆Y
D0

=

3.6k

(1 − F0)(1 − F2
0
)
ǫ0

φ0

(17)

Figure 11b compares the relative bore front height, computed with Eq. (17) and

k=1.2, with the available data of real estuaries (see Table 2); the agreement is actually

very good.

The relative tidal bore height has been computed with Eq. (10) also for the estuaries

where tidal bores do not occur. In this case, ∆Y/D0 is not negligibly small, however it

remains below 0.1.

5 Conclusions

The results of a numerical investigation aimed at improving our knowledge of tidal

bore formation are presented and discussed. In order to reduce the problem complexity,

this preliminary study used a rectangular channel of constant slope and width, and the

bore is generated as the result of rising water levels at the downstream end of the channel,

with a constant rate.

Three distinctive behaviors of the swell wave propagating upstream into the channel

are observed that are linked to bore, weak bore, or no bore formation. We also found that

tidal bore formation is mainly governed by the dimensionless rate of downstream level

rise, which must be greater than a threshold value that depends on the Froude number of

the incoming flow.
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Within the schematic framework used in this study, the analysis of the numerical re-

sults, essentially from the phenomenological point of view, has allowed formulating a cri-

terion able to predict the bore formation on the basis of external parameters and, to some

extent, able to distinguish weak from strong bores. The criterion has been then rewritten

in order to compare its prediction with the available data of real estuaries. This compar-

ison allowed us to recognize that the approach followed in this work can profitably be

extended to study the bore formation in the more complex conditions characterizing real

estuaries, which include the effects of the typical funnel shape, irregular cross-sections,

nonuniform incoming flow, and the gradual variation of tidal sea level.

Although the framework used in the present study is much simpler and schematic

than real estuaries, the good agreement between theoretical prediction and real, available

data suggests that, in fact, the key features controlling the formation of tidal bores have

been likely captured.
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