198 research outputs found

    Conduction mechanism of metal-TiO2–Si structures

    Get PDF
    The conduction model has been proposed for the metal-TiO2–Si (MIS) structures. Rutile films have been prepared on Si substrates by magnetron sputtering of TiO2 target and annealing in the air at temperatures T = 800 and 1050 K. The current-voltage (CVC) and capacitance-voltage characteristics of the structures have been measured over the range of T = 283–363 K. At positive potentials on the gate, the conductivity of the MIS structures is determined by the space charge-limited current in the dielectric layer

    Conduction mechanism of metal-TiO2-Si structures

    Get PDF
    The influence of annealing of titanium oxide films on the currents of metal-TiO2-n-Si structures was investigated. It has been shown that regardless of the annealing temperature the conductivity of structures at positive potentials on the gate is determined by currents limited by the space charge in the dielectric with traps exponentially distributed on energy. At negative potentials the main contribution to the current is the thermal generation of charge carriers in the space charge region in the silicon. Interface properties of TiO2-n-Si depend on the structural and phase state of the titanium oxide film which are determined by the annealing temperature

    АтрибутныС Π°Π½Π½ΠΎΡ‚Π°Ρ†ΠΈΠΈ ΠΈ ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² Π΄Π΅Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ C-ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ

    Get PDF
    In this paper a new kind of annotations, called attribute annotations, and the methodology for their application in a deductive program verification are proposed. A collection of annotating attributes for the subset C-kernel of the C language is described, and on their base two versions of axiomatic semantics of C-kernel - forward semantics and mixed forward semantics - are presented.ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ Π½ΠΎΠ²Ρ‹ΠΉ Π²ΠΈΠ΄ Π°Π½Π½ΠΎΡ‚Π°Ρ†ΠΈΠΉ, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… Π°Ρ‚Ρ€ΠΈΠ±ΡƒΡ‚Π½Ρ‹ΠΌΠΈ аннотациями, ΠΈ мСтодология ΠΈΡ… примСнСния Π² Π΄Π΅Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ. Описана коллСкция Π°Π½Π½ΠΎΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π°Ρ‚Ρ€ΠΈΠ±ΡƒΡ‚ΠΎΠ² для подмноТСства C-kernel языка C ΠΈ Π½Π° ΠΈΡ… основС прСдставлСны Π΄Π²Π° Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° аксиоматичСской сСмантики языка C- kernel - сСмантика прямого прослСТивания ΠΈ смСшанная сСмантика прямого прослСТивания

    Integration of first-principles methods and crystallographic database searches for new ferroelectrics: Strategies and explorations

    Full text link
    In this concept paper, the development of strategies for the integration of first-principles methods with crystallographic database mining for the discovery and design of novel ferroelectric materials is discussed, drawing on the results and experience derived from exploratory investigations on three different systems: (1) the double perovskite Sr(Sb1/2_{1/2}Mn1/2_{1/2})O3_3 as a candidate semiconducting ferroelectric; (2) polar derivatives of schafarzikite MMSb2_2O4_4; and (3) ferroelectric semiconductors with formula M2M_2P2_2(S,Se)6_6. A variety of avenues for further research and investigation are suggested, including automated structure type classification, low-symmetry improper ferroelectrics, and high-throughput first-principles searches for additional representatives of structural families with desirable functional properties.Comment: 13 pages, 5 figures, 4 table

    Exploration of structural, thermal, vibrational and spectroscopic properties of new noncentrosymmetric double borate Rb3NdB6O12

    Get PDF
    New noncentrosymmetric rare earth borate Rb3NdB6O12 is found in the ternary system Rb2O–Nd2O3–B2O3. The Rb3NdB6O12 powder was fabricated by solid state synthesis at 1050 K for 72 h and the crystal structure was obtained by the Rietveld method. Rb3NdB6O12 crystallized in space group R32 with unit cell parameters a = 13.5236(4), c = 31.162(1) Γ…, Z = 3. From DSC measurements, the reversible phase transition (I type) in Rb3NdB6O12 is observed at 852–936 K. The 200 ΞΌm thick tablet is transparent over the spectral range of 0.3–6.5 ΞΌm and the band gap is found as Eg ∼ 6.29 eV. Nonlinear optical response of Rb3NdB6O12 tested via SHG is estimated to be higher than that of K3YB6O12. Blue shift of Nd luminescent lines is found in comparison with other borates. The vibrational parameters of Rb3NdB6O12 are evaluated by experimental methods

    The crystal growth and properties of novel magnetic double molybdate RbFe5_{5}(MoO4_{4})7_{7} with mixed Fe3+^{3+}/Fe2+^{2+}states and 1D negative thermal expansion

    Get PDF
    Single crystals of new compound RbFe5_5(MoO4_4)7_7 were successfully grown by the flux method, and their crystal structure was determined using the X-ray single-crystal diffraction technique. The XRD analysis showed that the compound crystallizes in the monoclinic space group P21/m, with unit cell parameters a = 6.8987(4), b = 21.2912(12) and c = 8.6833(5) Γ…, Ξ² = 102.1896(18)Β°, V = 1246.66(12) Γ…3^3, Z (molecule number in the unit cell) = 2, R-factor (reliability factor) = 0.0166, and T = 293(2) K. Raman spectra were collected on the single crystal to show the local symmetry of MoO4_4 tetrahedra, after the confirmation of crystal composition using energy dispersive X-ray spectroscopy (EDS). The polycrystalline samples were synthesized by a solid-state reaction in the Ar atmosphere; the particle size and thermal stability were investigated by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) analyses. The compound decomposes above 1073 K in an Ar atmosphere with the formation of Fe(III) molybdate. The thermal expansion coefficient along the c direction has the value Ξ± = βˆ’1.3 ppm Kβˆ’1^{βˆ’1} over the temperature range of 298–473 K. Magnetic measurements revealed two maxima in the magnetization below 20 K, and paramagnetic behavior above 50 K with the calculated paramagnetic moment of 12.7 ΞΌB per formula unit is in good agreement with the presence of 3_3Fe3+^{3+} and 2_2Fe3+^{3+} in the high-spin (HS) state. The electronic structure of RbFe5(MoO4)7 is comparatively evaluated using X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations

    ВСрификация C-ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ Π² ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡΠ·Ρ‹ΠΊΠΎΠ²ΠΎΠΉ систСмС Π‘ΠŸΠ•ΠšΠ’Π 

    Get PDF
    This paper presents the expendable multi-language analysis and verication system SPECTRUM, which is being developed within the framework of the project SPEC- TRUM. The project prospects are discussed using the example of C program verication. The project aims at the development of a new integrated approach to program verica- tion which will allow the integration, unication and combination of program verication techniques together with accumulation and reuse of knowledge about them. One of the project features consists in the use of the specialized executable specication language Atoment. This language provides a unied format to represent both verication meth- ods and data for them (program models, annotations, logic formulas). The C-targeted component of the SPECTRUM system is based on our two-level C program verication method. This method represents a good illustration of the integrated approach, since it provides a complex C program verication that combines operational, axiomatic and transformational approaches.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π° Ρ€Π°ΡΡˆΠΈΡ€ΡΠ΅ΠΌΠ°Ρ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡΠ·Ρ‹ΠΊΠΎΠ²Π°Ρ систСма Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π‘ΠŸΠ•ΠšΠ’Π , разрабатываСмая Π² Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΎΠ΄Π½ΠΎΠΈΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π°, ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ‹ пСрспСктивы Π΅Π΅ использования Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ C-ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ. ΠŸΡ€ΠΎΠ΅ΠΊΡ‚ Π‘ΠŸΠ•ΠšΠ’Π  Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Π½Π° созданиС Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΊ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΈΠΌΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ позволяСт ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ, ΡƒΠ½ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΈΠΌΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ, Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°Ρ‚ΡŒ ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ знания ΠΎ Π½ΠΈΡ…. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° являСтся использованиС спСциализированного языка Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΠΌΡ‹Ρ… спСцификаций Atoment для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ срСдств Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ позволяСт ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² Π΅Π΄ΠΈΠ½ΠΎΠΌ ΡƒΠ½ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Π΅ ΠΊΠ°ΠΊ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ, Ρ‚Π°ΠΊ ΠΈ Π΄Π°Π½Π½Ρ‹Π΅ для Π½ΠΈΡ… (ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ, Π°Π½Π½ΠΎΡ‚Π°Ρ†ΠΈΠΈ, логичСскиС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹). C-ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° систСмы Π‘ΠŸΠ•ΠšΠ’Π  ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ Π΄Π²ΡƒΡ…ΡƒΡ€ΠΎΠ²Π½Π΅Π²Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ C-ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ. Π­Ρ‚ΠΎΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄ являСтся Ρ…ΠΎΡ€ΠΎΡˆΠ΅ΠΉ ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΠ΅ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π°, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠ½ обСспСчиваСт ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡƒΡŽ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ C-ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ, Π±Π°Π·ΠΈΡ€ΡƒΡŽΡ‰ΡƒΡŽΡΡ Π½Π° ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ, аксиоматичСского ΠΈ трансформационного ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ²
    • …
    corecore