105 research outputs found
New pixelized Micromegas detector with low discharge rate for the COMPASS experiment
New Micromegas (Micro-mesh gaseous detectors) are being developed in view of
the future physics projects planned by the COMPASS collaboration at CERN.
Several major upgrades compared to present detectors are being studied:
detectors standing five times higher luminosity with hadron beams, detection of
beam particles (flux up to a few hundred of kHz/mm^{2}, 10 times larger than
for the present Micromegas detectors) with pixelized read-out in the central
part, light and integrated electronics, and improved robustness. Two solutions
of reduction of discharge impact have been studied, with Micromegas detectors
using resistive layers and using an additional GEM foil. Performance of such
detectors has also been measured. A large size prototypes with nominal active
area and pixelized read-out has been produced and installed at COMPASS in 2010.
In 2011 prototypes featuring an additional GEM foil, as well as an resistive
prototype, are installed at COMPASS and preliminary results from those
detectors presented very good performance. We present here the project and
report on its status, in particular the performance of large size prototypes
with an additional GEM foil.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous
Detectors conference (MPGD2011), 29-31 August 2011, Kobe, Japa
New pixelized Micromegas detector for the COMPASS experiment
New Micromegas (Micro-mesh gaseous detectors) are being developed in view of
the future physics projects planned by the COMPASS collaboration at CERN.
Several major upgrades compared to present detectors are being studied:
detectors standing five times higher luminosity with hadron beams, detection of
beam particles (flux up to a few hundred of kHz/mm^2, 10 times larger than for
the present detectors) with pixelized read-out in the central part, light and
integrated electronics, and improved robustness. Studies were done with the
present detectors moved in the beam, and two first pixelized prototypes are
being tested with muon and hadron beams in real conditions at COMPASS. We
present here this new project and report on two series of tests, with old
detectors moved into the beam and with pixelized prototypes operated in real
data taking condition with both muon and hadron beams.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous
Detectors conference (MPGD2009), 12-15 June 2009, Kolympari, Crete, Greece
Minor details added and language corrections don
Status of the low beta 0.07 cryomodules for SPIRAL2
International audienceThe status of the low beta cryomodules for SPIRAL2, supplied by the Irfu institute of CEA Saclay, is reported in this paper. We summarise in three parts the RF tests performed on the cavities in vertical cryostat, the RF power tests of the qualifying cryomodule performed in 2010 and the RF power tests performed in 2011 on the first cryomodule of the serie
Measurement of the production of charged pions by protons on a tantalum target
A measurement of the double-differential cross-section for the production of
charged pions in proton--tantalum collisions emitted at large angles from the
incoming beam direction is presented. The data were taken in 2002 with the HARP
detector in the T9 beam line of the CERN PS. The pions were produced by proton
beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a tantalum target
with a thickness of 5% of a nuclear interaction length. The angular and
momentum range covered by the experiment (100 \MeVc \le p < 800 \MeVc and
0.35 \rad \le \theta <2.15 \rad) is of particular importance for the design
of a neutrino factory. The produced particles were detected using a
small-radius cylindrical time projection chamber (TPC) placed in a solenoidal
magnet. Track recognition, momentum determination and particle identification
were all performed based on the measurements made with the TPC. An elaborate
system of detectors in the beam line ensured the identification of the incident
particles. Results are shown for the double-differential cross-sections
at four incident
proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). In addition, the
pion yields within the acceptance of typical neutrino factory designs are shown
as a function of beam momentum. The measurement of these yields within a single
experiment eliminates most systematic errors in the comparison between rates at
different beam momenta and between positive and negative pion production.Comment: 49 pages, 31 figures. Version accepted for publication on Eur. Phys.
J.
Search for the exotic resonance in the NOMAD experiment
A search for exotic Theta baryon via Theta -> proton +Ks decay mode in the
NOMAD muon neutrino DIS data is reported. The special background generation
procedure was developed. The proton identification criteria are tuned to
maximize the sensitivity to the Theta signal as a function of xF which allows
to study the Theta production mechanism. We do not observe any evidence for the
Theta state in the NOMAD data. We provide an upper limit on Theta production
rate at 90% CL as 2.13 per 1000 of neutrino interactions.Comment: Accepted to European Physics Journal
The Drift Chambers Of The Nomad Experiment
We present a detailed description of the drift chambers used as an active
target and a tracking device in the NOMAD experiment at CERN. The main
characteristics of these chambers are a large area, a self supporting structure
made of light composite materials and a low cost. A spatial resolution of 150
microns has been achieved with a single hit efficiency of 97%.Comment: 42 pages, 26 figure
Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up
Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated
Final NOMAD results on nu_mu->nu_tau and nu_e->nu_tau oscillations including a new search for nu_tau appearance using hadronic tau decays
Results from the nu_tau appearance search in a neutrino beam using the full
NOMAD data sample are reported. A new analysis unifies all the hadronic tau
decays, significantly improving the overall sensitivity of the experiment to
oscillations. The "blind analysis" of all topologies yields no evidence for an
oscillation signal. In the two-family oscillation scenario, this sets a 90%
C.L. allowed region in the sin^2(2theta)-Delta m^2 plane which includes
sin^2(2theta)<3.3 x 10^{-4} at large Delta m^2 and Delta m^2 < 0.7 eV^2/c^4 at
sin^2(2theta)=1. The corresponding contour in the nu_e->nu_tau oscillation
hypothesis results in sin^2(2theta)<1.5 x 10^{-2} at large Delta m^2 and Delta
m^2 < 5.9 eV^2/c^4 at sin^2(2theta)=1. We also derive limits on effective
couplings of the tau lepton to nu_mu or nu_e.Comment: 46 pages, 16 figures, Latex, to appear on Nucl. Phys.
Prediction of Neutrino Fluxes in the NOMAD Experiment
The method developed for the calculation of the flux and composition of the
West Area Neutrino Beam used by NOMAD in its search for neutrino oscillations
is described. The calculation is based on particle production rates computed
using a recent version of FLUKA and modified to take into account the cross
sections measured by the SPY and NA20 experiments. These particles are
propagated through the beam line taking into account the material and magnetic
fields they traverse. The neutrinos produced through their decays are tracked
to the NOMAD detector. The fluxes of the four neutrino flavours at NOMAD are
predicted with an uncertainty of about 8% for nu(mu) and nu(e), 10% for
antinu(mu), and 12% for antinu(e). The energy-dependent uncertainty achieved on
the R(e, mu) prediction needed for a nu(mu)->nu(e) oscillation search ranges
from 4% to 7%, whereas the overall normalization uncertainty on this ratio is
4.2%.Comment: 43 pages, 20 figures. Submitted to Nucl. Phys.
The NOMAD experiment at the CERN SPS
The NOMAD experiment is a short base-line search for oscillations in the CERN neutrino beam. The 's are searched for through their charged-current interactions followed by the observation of the resulting through its electronic, muonic or hadronic decays. These decays are recognized using kinematical criteria necessitating the use of a light target which enables the reconstruction of individual particles produced in the neutrino interactions. This paper describes the various components of the NOMAD detector: the target and muon drift chambers, the electromagnetic and hadronic calorimeters, the preshower and transition radiation detectors, and the veto and trigger scintillation counters. The beam and data acquisition system are also described. The quality of the reconstruction of individual particles is demonstrated through the ability of NOMAD to observe K's, 's and 's. Finally, the observation of through its electronic decay being one of the most promising channels in the search, the identification of electrons in NOMAD is discussed
- …
