93 research outputs found

    In vitro biosafety profile evaluation of multipotent mesenchymal stem cells derived from the bone marrow of sarcoma patients.

    Get PDF
    BACKGROUND: In osteosarcoma (OS) and most Ewing sarcoma (EWS) patients, the primary tumor originates in the bone. Although tumor resection surgery is commonly used to treat these diseases, it frequently leaves massive bone defects that are particularly difficult to be treated. Due to the therapeutic potential of mesenchymal stem cells (MSCs), OS and EWS patients could benefit from an autologous MSCs-based bone reconstruction. However, safety concerns regarding the in vitro expansion of bone marrow-derived MSCs have been raised. To investigate the possible oncogenic potential of MSCs from OS or EWS patients (MSC-SAR) after expansion, this study focused on a biosafety assessment of MSC-SAR obtained after short- and long-term cultivation compared with MSCs from healthy donors (MSC-CTRL). METHODS: We initially characterized the morphology, immunophenotype, and differentiation multipotency of isolated MSC-SAR. MSC-SAR and MSC-CTRL were subsequently expanded under identical culture conditions. Cells at the early (P3/P4) and late (P10) passages were collected for the in vitro analyses including: the sequencing of genes frequently mutated in OS and EWS, evaluation of telomerase activity, assessment of the gene expression profile and activity of major cancer pathways, cytogenetic analysis on synchronous MSC, and molecular karyotyping using a comparative genomic hybridization (CGH) array. RESULTS: MSC-SAR displayed comparable morphology, immunophenotype, proliferation rate, differentiation potential, and telomerase activity to MSC-CTRL. Both cell types displayed signs of senescence in the late stages of culture with no relevant changes in cancer gene expression. However, cytogenetic analysis detected chromosomal anomalies in the early and late stages of MSC-SAR and MSC-CTRL after culture. CONCLUSIONS: Our results demonstrated that the in vitro expansion of MSC does not influence or favor malignant transformation since MSC-SAR were not more prone than MSC-CTRL to deleterious changes during culture. However, the presence of chromosomal aberrations supports rigorous phenotypic, functional and genetic evaluation of the biosafety of MSCs, which is important for clinical applications

    INTRAHEPATIC CHOLANGIOCARCINOMA DEVELOPMENT IN A PATIENT WITH A NOVEL BAP1 GERMLINE MUTATION AND LOW EXPOSURE TO ASBESTOS

    Get PDF
    BRCA1 associated protein-1 (BAP1) germline mutations define a novel hereditary cancer syndrome, namely BAP1 tumor predisposition syndrome (BAP1-TPDS), characterized by an increased susceptibility to develop different cancer types, including mesothelioma, uveal and cutaneous melanoma, renal cell carcinoma, and basal cell and squamous cell carcinoma. Currently, the role of BAP1 germline mutations in intrahepatic cholangiocarcinoma (iCCA) pathogenesis is less known. Here we report the first clinical case of a female patient who developed an iCCA when she was 47-years-old and was found to carry a novel germline mutation at a splicing site of exon 4 in BAP1 gene (NM_004656.4: c.255_255+6del). An accurate anamnesis revealed the absence of risk factors linked to iCCA development, except for a low occupational exposure to asbestos. In tumor tissue, BAP1 sequencing, multiplex ligation-dependent probe amplification and immunoistochemistry showed the loss of heterozygosity and lack of nuclear expression, suggesting that BAP1 wild-type allele and functional protein were lost in cancer cells, in line with the classical two-hit model of tumor suppressor genes. Further studies are needed to confirm whether iCCA may be included into BAP1-TPDS cancer phenotypes and whether minimal asbestos exposure may facilitate the development of this malignancy in individuals carrying BAP1 germline mutations

    A new classification of Cyperaceae (Poales) supported by phylogenomic data

    Get PDF
    Cyperaceae (sedges) are the third largest monocot family and are of considerable economic and ecological importance. Sedges represent an ideal model family to study evolutionary biology because of their species richness, global distribution, large discrepancies in lineage diversity, broad range of ecological preferences, and adaptations including multiple origins of C4 photosynthesis and holocentric chromosomes. Goetghebeur’s seminal work on Cyperaceae published in 1998 provided the most recent complete classification at tribal and generic level, based on a morphological study of Cyperaceae inflorescence, spikelet, flower and embryo characters plus anatomical and other information. Since then, several family‐level molecular phylogenetic studies using Sanger sequence data have been published. Here, more than 20 years after the last comprehensive classification of the family, we present the first family‐wide phylogenomic study of Cyperaceae based on targeted sequencing using the Angiosperms353 probe kit sampling 311 accessions. Additionally, 62 accessions available from GenBank were mined for overlapping reads and included in the phylogenomic analyses. Informed by this backbone phylogeny, a new classification for the family at the tribal, subtribal and generic levels is proposed. The majority of previously recognized suprageneric groups are supported, and for the first time we establish support for tribe Cryptangieae as a clade including the genus Koyamaea. We provide a taxonomic treatment including identification keys and diagnoses for the 2 subfamilies, 24 tribes and 10 subtribes and basic information on the 95 genera. The classification includes five new subtribes in tribe Schoeneae: Anthelepidinae, Caustiinae, Gymnoschoeninae, Lepidospermatinae and Oreobolinae. This article is protected by copyright. All rights reserved

    Target sequence data shed new light on the infrafamilial classification of Araceae

    Get PDF
    Premise: Recent phylogenetic studies of the Araceae have confirmed the position of the duckweeds nested within the aroids, and the monophyly of a clade containing all the unisexual flowered aroids plus the bisexual‐flowered Calla palustris. The main objective of the present study was to better resolve the deep phylogenetic relationships among the main lineages within the family, particularly the relationships between the eight currently recognized subfamilies. We also aimed to confirm the phylogenetic position of the enigmatic genus Calla in relation to the long‐debated evolutionary transition between bisexual and unisexual flowers in the family. Methods: Nuclear DNA sequence data were generated for 128 species across 111 genera (78%) of Araceae using target sequence capture and the Angiosperms 353 universal probe set. Results: The phylogenomic data confirmed the monophyly of the eight Araceae subfamilies, but the phylogenetic position of subfamily Lasioideae remains uncertain. The genus Calla is included in subfamily Aroideae, which has also been expanded to include Zamioculcadoideae. The tribe Aglaonemateae is newly defined to include the genera Aglaonema and Boycea. Conclusions: Our results strongly suggest that new research on African genera (Callopsis, Nephthytis, and Anubias) and Calla will be important for understanding the early evolution of the Aroideae. Also of particular interest are the phylogenetic positions of the isolated genera Montrichardia, Zantedeschia, and Anchomanes, which remain only moderately supported here

    HSPG-Deficient Zebrafish Uncovers Dental Aspect of Multiple Osteochondromas

    Get PDF
    Multiple Osteochondromas (MO; previously known as multiple hereditary exostosis) is an autosomal dominant genetic condition that is characterized by the formation of cartilaginous bone tumours (osteochondromas) at multiple sites in the skeleton, secondary bursa formation and impingement of nerves, tendons and vessels, bone curving, and short stature. MO is also known to be associated with arthritis, general pain, scarring and occasional malignant transformation of osteochondroma into secondary peripheral chondrosarcoma. MO patients present additional complains but the relevance of those in relation to the syndromal background needs validation. Mutations in two enzymes that are required during heparan sulphate synthesis (EXT1 or EXT2) are known to cause MO. Previously, we have used zebrafish which harbour mutations in ext2 as a model for MO and shown that ext2−/− fish have skeletal defects that resemble those seen in osteochondromas. Here we analyse dental defects present in ext2−/− fish. Histological analysis reveals that ext2−/− fish have very severe defects associated with the formation and the morphology of teeth. At 5 days post fertilization 100% of ext2−/− fish have a single tooth at the end of the 5th pharyngeal arch, whereas wild-type fish develop three teeth, located in the middle of the pharyngeal arch. ext2−/− teeth have abnormal morphology (they were shorter and thicker than in the WT) and patchy ossification at the tooth base. Deformities such as split crowns and enamel lesions were found in 20% of ext2+/− adults. The tooth morphology in ext2−/− was partially rescued by FGF8 administered locally (bead implants). Our findings from zebrafish model were validated in a dental survey that was conducted with assistance of the MHE Research Foundation. The presence of the malformed and/or displaced teeth with abnormal enamel was declared by half of the respondents indicating that MO might indeed be also associated with dental problems

    The origin and speciation of orchids

    Get PDF
    SummaryOrchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis.We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants.The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica.These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation
    • 

    corecore