177 research outputs found

    DRD1-DRD5 Expression Profiles in Arthritis Rheumatoid

    Get PDF
    Objectives The cause of rheumatoid arthritis (RA) as a chronic inflammatory autoimmune disease is still unknown. It appears that both genetic and environmental factors play a role in its pathogenesis. Recent studies reveal that in addition to the CNS, immune cells synthesis neurotransmitters so that these catecholamines can regulate immune functions. The aim of this study is to evaluate the dopamine receptor gene expression profiles on peripheral blood mononuclear cells of rheumatoid arthritis patients in comparison with normal individuals. Material & Methods In the present study, we investigated dopamine receptor gene expression in PBMCs of 40 RA patients and 40 healthy individuals using Real Time-PCR.The specificities of the obtained Real time PCR products for the respective dopamine receptors fragments were confirmed by sequenced analysis capillary system Results We found that DRD1-DRD5 types of dopamine receptors genes expression profiles of rheumatoid arthritis patients differ compared to healthy individuals. Moreover, a significant difference of DR2 and DR4 gene expression was seen in rheumatoid arthritis patients. Conclusion This study showed that some types of dopamine receptors genes expression profiles alter in rheumatoid arthritis patients with comparison to healthy individuals Moreover, this alteration possibly could result in dysfunction of dopaminergic system in immune cells and finally lead to rheumatoid arthritis

    The promoter polymorphism -232C/G of the PCK1 gene is associated with type 2 diabetes in a UK-resident South Asian population

    Get PDF
    Background: The PCK1 gene, encoding cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C), has previously been implicated as a candidate gene for type 2 diabetes (T2D) susceptibility. Rodent models demonstrate that over-expression of Pck1 can result in T2D development and a single nucleotide polymorphism (SNP) in the promoter region of human PCK1 (-232C/G) has exhibited significant association with the disease in several cohorts. Within the UK-resident South Asian population, T2D is 4 to 6 times more common than in indigenous white Caucasians. Despite this, few studies have reported on the genetic susceptibility to T2D in this ethnic group and none of these has investigated the possible effect of PCK1 variants. We therefore aimed to investigate the association between common variants of the PCK1 gene and T2D in a UK-resident South Asian population of Punjabi ancestry, originating predominantly from the Mirpur area of Azad Kashmir, Pakistan. \ud \ud Methods: We used TaqMan assays to genotype five tagSNPs covering the PCK1 gene, including the -232C/G variant, in 903 subjects with T2D and 471 normoglycaemic controls. \ud \ud Results: Of the variants studied, only the minor allele (G) of the -232C/G SNP demonstrated a significant association with T2D, displaying an OR of 1.21 (95% CI: 1.03 - 1.42, p = 0.019). \ud \ud Conclusion: This study is the first to investigate the association between variants of the PCK1 gene and T2D in South Asians. Our results suggest that the -232C/G promoter polymorphism confers susceptibility to T2D in this ethnic group. \ud \ud Trial registration: UKADS Trial Registration: ISRCTN38297969

    Ethnic differences in DNA methyltransferases expression in patients with systemic lupus erythematosus

    Get PDF
    Systemic lupus erythematous (SLE) is a systemic autoimmune inflammatory disease with both genetic and epigenetic etiologies. Evidence suggests that deregulation of specific genes through epigenetic mechanisms may be a contributing factor to SLE pathology. There is increasing evidence that DNA methyltransferase activity may be involved. This study demonstrated modulation in expression of DNA methyltransferases (DNMTs) according to ethnicity in patients diagnosed with SLE. Furthermore, differential expression in one of the DNMTs was found in a subset of lupus patients on dehydroepiandrosterone (DHEA) therapy. Real-time PCR analyses of DNMT1, DNMT3A and DNMT3B in peripheral blood mononuclear cells from a cohort of African American and European American lupus and non-lupus women were conducted. Also, global DNA methylation was assessed using the MethylFlash.sup.TM methylated quantification colorimetric assay. These findings suggest that epigenetic changes may play a critical role in the manifestations of the disease observed among ethnic groups, particularly African American women who often have a higher incidence of lupus. DHEA therapy effects on DNMT3A expression in AA women warrant further investigation in a larger population

    Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond.

    Get PDF
    International audienceABSTRACT: The immunological roles of B-cells are being revealed as increasingly complex by functions that are largely beyond their commitment to differentiate into plasma cells and produce antibodies, the key molecular protagonists of innate immunity, and also by their compartmentalisation, a more recently acknowledged property of this immune cell category. For decades, B-cells have been recognised by their expression of an immunoglobulin that serves the function of an antigen receptor, which mediates intracellular signalling assisted by companion molecules. As such, B-cells were considered simple in their functioning compared to the other major type of immune cell, the T-lymphocytes, which comprise conventional T-lymphocyte subsets with seminal roles in homeostasis and pathology, and non-conventional T-lymphocyte subsets for which increasing knowledge is accumulating. Since the discovery that the B-cell family included two distinct categories - the non-conventional, or extrafollicular, B1 cells, that have mainly been characterised in the mouse; and the conventional, or lymph node type, B2 cells - plus the detailed description of the main B-cell regulator, FcΞ³RIIb, and the function of CD40+ antigen presenting cells as committed/memory B-cells, progress in B-cell physiology has been slower than in other areas of immunology. Cellular and molecular tools have enabled the revival of innate immunity by allowing almost all aspects of cellular immunology to be re-visited. As such, B-cells were found to express "Pathogen Recognition Receptors" such as TLRs, and use them in concert with B-cell signalling during innate and adaptive immunity. An era of B-cell phenotypic and functional analysis thus began that encompassed the study of B-cell microanatomy principally in the lymph nodes, spleen and mucosae. The novel discovery of the differential localisation of B-cells with distinct phenotypes and functions revealed the compartmentalisation of B-cells. This review thus aims to describe novel findings regarding the B-cell compartments found in the mouse as a model organism, and in human physiology and pathology. It must be emphasised that some differences are noticeable between the mouse and human systems, thus increasing the complexity of B-cell compartmentalisation. Special attention will be given to the (lymph node and spleen) marginal zones, which represent major crossroads for B-cell types and functions and a challenge for understanding better the role of B-cell specificities in innate and adaptive immunology

    Comparison of Antibody Repertoires Produced by HIV-1 Infection, Other Chronic and Acute Infections, and Systemic Autoimmune Disease

    Get PDF
    Background Antibodies (Abs) produced during HIV-1 infection rarely neutralize a broad range of viral isolates; only eight broadly-neutralizing (bNt) monoclonal (M)Abs have been isolated. Yet, to be effective, an HIV-1 vaccine may have to elicit the essential features of these MAbs. The V genes of all of these bNt MAbs are highly somatically mutated, and the VH genes of five of them encode a long (β‰₯20 aa) third complementarity-determining region (CDR-H3). This led us to question whether long CDR-H3s and high levels of somatic mutation (SM) are a preferred feature of anti-HIV bNt MAbs, or if other adaptive immune responses elicit them in general. Methodology and Principal Findings We assembled a VH-gene sequence database from over 700 human MAbs of known antigen specificity isolated from chronic (viral) infections (ChI), acute (bacterial and viral) infections (AcI), and systemic autoimmune diseases (SAD), and compared their CDR-H3 length, number of SMs and germline VH-gene usage. We found that anti-HIV Abs, regardless of their neutralization breadth, tended to have long CDR-H3s and high numbers of SMs. However, these features were also common among Abs associated with other chronic viral infections. In contrast, Abs from acute viral infections (but not bacterial infections) tended to have relatively short CDR-H3s and a low number of SMs, whereas SAD Abs were generally intermediate in CDR-H3 length and number of SMs. Analysis of VH gene usage showed that ChI Abs also tended to favor distal germline VH-genes (particularly VH1-69), especially in Abs bearing long CDR-H3s. Conclusions and Significance The striking difference between the Abs produced during chronic vs. acute viral infection suggests that Abs bearing long CDR-H3s, high levels of SM and VH1-69 gene usage may be preferentially selected during persistent infection

    A Conserved Role for Syndecan Family Members in the Regulation of Whole-Body Energy Metabolism

    Get PDF
    Syndecans are a family of type-I transmembrane proteins that are involved in cell-matrix adhesion, migration, neuronal development, and inflammation. Previous quantitative genetic studies pinpointed Drosophila Syndecan (dSdc) as a positional candidate gene affecting variation in fat storage between two Drosophila melanogaster strains. Here, we first used quantitative complementation tests with dSdc mutants to confirm that natural variation in this gene affects variability in Drosophila fat storage. Next, we examined the effects of a viable dSdc mutant on Drosophila whole-body energy metabolism and associated traits. We observed that young flies homozygous for the dSdc mutation had reduced fat storage and slept longer than homozygous wild-type flies. They also displayed significantly reduced metabolic rate, lower expression of spargel (the Drosophila homologue of PGC-1), and reduced mitochondrial respiration. Compared to control flies, dSdc mutants had lower expression of brain insulin-like peptides, were less fecund, more sensitive to starvation, and had reduced life span. Finally, we tested for association between single nucleotide polymorphisms (SNPs) in the human SDC4 gene and variation in body composition, metabolism, glucose homeostasis, and sleep traits in a cohort of healthy early pubertal children. We found that SNP rs4599 was significantly associated with resting energy expenditure (Pβ€Š=β€Š0.001 after Bonferroni correction) and nominally associated with fasting glucose levels (Pβ€Š=β€Š0.01) and sleep duration (Pβ€Š=β€Š0.044). On average, children homozygous for the minor allele had lower levels of glucose, higher resting energy expenditure, and slept shorter than children homozygous for the common allele. We also observed that SNP rs1981429 was nominally associated with lean tissue mass (Pβ€Š=β€Š0.035) and intra-abdominal fat (Pβ€Š=β€Š0.049), and SNP rs2267871 with insulin sensitivity (Pβ€Š=β€Š0.037). Collectively, our results in Drosophila and humans argue that syndecan family members play a key role in the regulation of body metabolism

    Expansion of immunoglobulin-secreting cells and defects in B cell tolerance in Rag-dependent immunodeficiency

    Get PDF
    The contribution of B cells to the pathology of Omenn syndrome and leaky severe combined immunodeficiency (SCID) has not been previously investigated. We have studied a mut/mut mouse model of leaky SCID with a homozygous Rag1 S723C mutation that impairs, but does not abrogate, V(D)J recombination activity. In spite of a severe block at the pro–B cell stage and profound B cell lymphopenia, significant serum levels of immunoglobulin (Ig) G, IgM, IgA, and IgE and a high proportion of Ig-secreting cells were detected in mut/mut mice. Antibody responses to trinitrophenyl (TNP)-Ficoll and production of high-affinity antibodies to TNP–keyhole limpet hemocyanin were severely impaired, even after adoptive transfer of wild-type CD4+ T cells. Mut/mut mice produced high amounts of low-affinity self-reactive antibodies and showed significant lymphocytic infiltrates in peripheral tissues. Autoantibody production was associated with impaired receptor editing and increased serum B cell–activating factor (BAFF) concentrations. Autoantibodies and elevated BAFF levels were also identified in patients with Omenn syndrome and leaky SCID as a result of hypomorphic RAG mutations. These data indicate that the stochastic generation of an autoreactive B cell repertoire, which is associated with defects in central and peripheral checkpoints of B cell tolerance, is an important, previously unrecognized, aspect of immunodeficiencies associated with hypomorphic RAG mutations

    Genetic Evidence Supporting the Association of Protease and Protease Inhibitor Genes with Inflammatory Bowel Disease: A Systematic Review

    Get PDF
    As part of the European research consortium IBDase, we addressed the role of proteases and protease inhibitors (P/PIs) in inflammatory bowel disease (IBD), characterized by chronic mucosal inflammation of the gastrointestinal tract, which affects 2.2 million people in Europe and 1.4 million people in North America. We systematically reviewed all published genetic studies on populations of European ancestry (67 studies on Crohn's disease [CD] and 37 studies on ulcerative colitis [UC]) to identify critical genomic regions associated with IBD. We developed a computer algorithm to map the 807 P/PI genes with exact genomic locations listed in the MEROPS database of peptidases onto these critical regions and to rank P/PI genes according to the accumulated evidence for their association with CD and UC. 82 P/PI genes (75 coding for proteases and 7 coding for protease inhibitors) were retained for CD based on the accumulated evidence. The cylindromatosis/turban tumor syndrome gene (CYLD) on chromosome 16 ranked highest, followed by acylaminoacyl-peptidase (APEH), dystroglycan (DAG1), macrophage-stimulating protein (MST1) and ubiquitin-specific peptidase 4 (USP4), all located on chromosome 3. For UC, 18 P/PI genes were retained (14 proteases and 4protease inhibitors), with a considerably lower amount of accumulated evidence. The ranking of P/PI genes as established in this systematic review is currently used to guide validation studies of candidate P/PI genes, and their functional characterization in interdisciplinary mechanistic studies in vitro and in vivo as part of IBDase. The approach used here overcomes some of the problems encountered when subjectively selecting genes for further evaluation and could be applied to any complex disease and gene family

    A Genome-Wide Association Study Identifies Susceptibility Variants for Type 2 Diabetes in Han Chinese

    Get PDF
    To investigate the underlying mechanisms of T2D pathogenesis, we looked for diabetes susceptibility genes that increase the risk of type 2 diabetes (T2D) in a Han Chinese population. A two-stage genome-wide association (GWA) study was conducted, in which 995 patients and 894 controls were genotyped using the Illumina HumanHap550-Duo BeadChip for the first genome scan stage. This was further replicated in 1,803 patients and 1,473 controls in stage 2. We found two loci not previously associated with diabetes susceptibility in and around the genes protein tyrosine phosphatase receptor type D (PTPRD) (Pβ€Š=β€Š8.54Γ—10βˆ’10; odds ratio [OR]β€Š=β€Š1.57; 95% confidence interval [CI]β€Š=β€Š1.36–1.82), and serine racemase (SRR) (Pβ€Š=β€Š3.06Γ—10βˆ’9; ORβ€Š=β€Š1.28; 95% CIβ€Š=β€Š1.18–1.39). We also confirmed that variants in KCNQ1 were associated with T2D risk, with the strongest signal at rs2237895 (Pβ€Š=β€Š9.65Γ—10βˆ’10; ORβ€Š=β€Š1.29, 95% CIβ€Š=β€Š1.19–1.40). By identifying two novel genetic susceptibility loci in a Han Chinese population and confirming the involvement of KCNQ1, which was previously reported to be associated with T2D in Japanese and European descent populations, our results may lead to a better understanding of differences in the molecular pathogenesis of T2D among various populations
    • …
    corecore