170 research outputs found

    Induced hyperlipaemia and immune challenge in locusts

    Get PDF
    Injections of immunogens, such as β-1,3-glucan or lipopolysaccharide (LPS), bring about a marked hyperlipaemia with associated changes in lipophorins and apolipophorin-III in the haemolymph of Locusta migratoria. These changes are similar to those observed after injection of adipokinetic hormone (AKH). The possibility that endogenous AKH is released as part of the response to these immunogens is investigated using passive immunisation against AKH-I, and measurement of AKH-I titre in the haemolymph after injection of immunogens. The data presented show that, despite the similarity of the changes brought about by the presence of immunogens in the haemolymph to those brought about by AKH, there is no release of endogenous AKH after injection of laminarin or LPS. A direct effect of the immunogens on release of neutral lipids by the fat body cannot be demonstrated in vitro, and the mechanism by which hyperlipaemia is induced during immune challenge remains uncertain

    Nonlinear Model-Based Control of Unstable Wells

    Get PDF
    This paper illustrates the potential of nonlinear model-based control applied for stabilization of unstable flow in oil wells. A simple empirical model is developed that describes the qualitative behavior of the downhole pressure during severe riser slugging. A nonlinear controller is designed by an integrator backstepping approach, and stabilization for open-loop unstable pressure setpoints is demonstrated. The proposed backstepping controller is shown in simulations to perform better than PI and PD controllers for low pressure setpoints, and is in addition easier to tune. Operation at a low pressure setpoint is desirable since it corresponds to a high production flow rate. The simulation results are presented to illustrate the effectiveness of proposed control scheme

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio

    Extra-curricular physical activity and socioeconomic status in Italian adolescents

    Get PDF
    BACKGROUND: The relationship between physical activity and health status has been thoroughly investigated in several studies, while the relation between physical activity and socio-economic status (SES) is less investigated. The aim of this study was to measure the extra-curricular physical activity of adolescents related to the socio-economic status (SES) of their families. METHODS: The survey was carried out by submitting an anonymous questionnaire to junior high school students in the following Regions: Lazio, Abruzzo, Molise, Campania, Puglia, during the school year 2002–2003. Extra-curriculum physical activity was evaluated considering whether or not present and hours of activity weekly conducted. 2411 students agreed to participate in the study. RESULTS: Participants were 1121 males (46.5%) and 1290 females (53.5%), aged between 11 and 17 years (median age: 12 years). 71.1% of the students reported to practice extra-curricular physical activity. Parents' educational levels and work activities play an important role in predicting students' physical activity, with the more remunerative activities and higher educational levels being more predictive. CONCLUSION: The results confirm the relationship between adolescents' physical activity and their families' SES. In particular, a positive relationship between participation in extra-curricular physical activity and their families high SES was found. These data will be useful for school administrators and for politicians in order to reduce the gap between adolescents from the least and most disadvantaged families

    Passive smoking in babies: The BIBE study (Brief Intervention in babies. Effectiveness)

    Get PDF
    Background: There is evidence that exposure to passive smoking in general, and in babies in particular, is an important cause of morbimortality. Passive smoking is related to an increased risk of pediatric diseases such as sudden death syndrome, acute respiratory diseases, worsening of asthma, acute-chronic middle ear disease and slowing of lung growth. The objective of this article is to describe the BIBE study protocol. The BIBE study aims to determine the effectiveness of a brief intervention within the context of Primary Care, directed to mothers and fathers that smoke, in order to reduce the exposure of babies to passive smoking (ETS). Methods/Design: Cluster randomized field trial (control and intervention group), multicentric and open. Subject: Fathers and/or mothers who are smokers and their babies (under 18 months) that attend pediatric services in Primary Care in Catalonia. The measurements will be taken at three points in time, in each of the fathers and/or mothers who respond to a questionnaire regarding their baby's clinical background and characteristics of the baby's exposure, together with variables related to the parents' tobacco consumption. A hair sample of the baby will be taken at the beginning of the study and at six months after the initial visit (biological determination of nicotine). The intervention group will apply a brief intervention in passive smoking after specific training and the control group will apply the habitual care. Discussion: Exposure to ETS is an avoidable factor related to infant morbimortality. Interventions to reduce exposure to ETS in babies are potentially beneficial for their health. The BIBE study evaluates an intervention to reduce exposure to ETS that takes advantage of pediatric visits. Interventions in the form of advice, conducted by pediatric professionals, are an excellent opportunity for prevention and protection of infants against the harmful effects of ETS

    Systematic Development of the YouRAction program, a computer-tailored Physical Activity promotion intervention for Dutch adolescents, targeting personal motivations and environmental opportunities

    Get PDF
    Background. Increasing physical activity (PA) among adolescents is an important health promotion goal. PA has numerous positive health effects, but the majority of Dutch adolescents do not meet PA requirements. The present paper describes the systematic development of a theory-based computer-tailored intervention, YouRAction, which targets individual and environmental factors determining PA among adolescents. Design. The intervention development was guided by the Intervention Mapping protocol, in order to define clear program objectives, theoretical methods and practical strategies, ensure systematic program planning and pilot-testing, and anticipate on implementation and evaluation. Two versions of YouRAction were developed: one that targets individual determinants and an extended version that also provides feedback on opportunities to be active in the neighbourhood. Key determinants that were targeted included: knowledge and awareness, attitudes, self-efficacy and subjective norms. The extended version also addressed perceived availability of neighbourhood PA facilities. Both versions aimed to increase levels of moderate-to-vigorous PA among adolescents. The intervention structure was based on self-regulation theory, comprising of five steps in the process of successful goal pursuit. Monitoring of PA behaviour and behavioural and normative feedback were used to increase awareness of PA behaviour; motivation was enhanced by targeting self-efficacy and attitudes, by means of various interactive strategies, such as web movies; the perceived environment was targeted by visualizing opportunities to be active in an interactive geographical map of the home environment; in the goal setting phase, the adolescents were guided in setting a goal and developing an action plan to achieve this goal; in the phase of active goal pursuit adolescents try to achieve their goal and in the evaluation phase the achievements are evaluated. Based on the results of the evaluation adolescents could revise their goal or choose another behaviour to focus on. The intervention is delivered in a classroom setting in three lessons. YouRAction will be evaluated in a cluster-randomized trial, with classes as unit of randomization. Evaluation will focus on PA outcomes, cognitive mediators/moderators and process measures. Discussion. The planned development of YouRAction resulted in two computer-tailored interventions aimed at the promotion of PA in a Dutch secondary school setting. Trial registration. NTR1923
    • …
    corecore