358 research outputs found

    Host genotype and microbiome associations in co-occurring clonal and non-clonal kelp, Ecklonia radiata

    Get PDF
    A fundamental question in holobiont biology is the extent to which microbiomes are determined by host characteristics regulated by their genotype. Studies on the interactions of host genotype and microbiomes are emerging but disentangling the role that host genotype has in shaping microbiomes remains challenging in natural settings. Host genotypes tend to be segregated in space and affected by different environments. Here we overcome this challenge by studying an unusual situation where host asexual (5 clonal lineages) and sexual genotypes (15 non-clonal lineages) of the same species co-occur under the same environment. This allowed us to partition the influence of morphological traits and genotype in shaping host-associated bacterial communities. Lamina-associated bacteria of co-occurring kelp sexual non-clonal (Ecklonia radiata) and asexual clonal (E. brevipes) morphs were compared to test whether host genotype influences microbiomes beyond morphology. Similarity of bacterial composition and predicted functions were evaluated among individuals within a single clonal genotype or among non-clonal genotypes of each morph. Higher similarity in bacterial composition and inferred functions were found among identical clones of E. brevipes compared to other clonal genotypes or unique non-clonal E. radiata genotypes. Additionally, bacterial diversity and composition differed significantly between the two morphs and were related with one morphological trait in E. brevipes (haptera). Thus, factors regulated by the host genotype (e.g. secondary metabolite production) likely drive differences in microbial communities between morphs. The strong association of genotype and microbiome found here highlights the importance of genetic relatedness of hosts in determining variability in their bacterial symbionts.publishedVersio

    Carbon sequestration and climate change mitigation using macroalgae: a state of knowledge review

    Get PDF
    The conservation, restoration, and improved management of terrestrial forests significantly contributes to mitigate climate change and its impacts, as well as providing numerous co-benefits. The pressing need to reduce emissions and increase carbon removal from the atmosphere is now also leading to the development of natural climate solutions in the ocean. Interest in the carbon sequestration potential of underwater macroalgal forests is growing rapidly among policy, conservation, and corporate sectors. Yet, our understanding of whether carbon sequestration from macroalgal forests can lead to tangible climate change mitigation remains severely limited, hampering their inclusion in international policy or carbon finance frameworks. Here, we examine the results of over 180 publications to synthesise evidence regarding macroalgal forest carbon sequestration potential. We show that research efforts on macroalgae carbon sequestration are heavily skewed towards particulate organic carbon (POC) pathways (77% of data publications), and that carbon fixation is the most studied flux (55%). Fluxes leading directly to carbon sequestration (e.g. carbon export or burial in marine sediments) remain poorly resolved, likely hindering regional or country-level assessments of carbon sequestration potential, which are only available from 17 of the 150 countries where macroalgal forests occur. To solve this issue, we present a framework to categorize coastlines according to their carbon sequestration potential. Finally, we review the multiple avenues through which this sequestration can translate into climate change mitigation capacity, which largely depends on whether management interventions can increase carbon removal above a natural baseline or avoid further carbon emissions. We find that conservation, restoration and afforestation interventions on macroalgal forests can potentially lead to carbon removal in the order of 10's of Tg C globally. Although this is lower than current estimates of natural sequestration value of all macroalgal habitats (61–268 Tg C year−1), it suggests that macroalgal forests could add to the total mitigation potential of coastal blue carbon ecosystems, and offer valuable mitigation opportunities in polar and temperate areas where blue carbon mitigation is currently low. Operationalizing that potential will necessitate the development of models that reliably estimate the proportion of production sequestered, improvements in macroalgae carbon fingerprinting techniques, and a rethinking of carbon accounting methodologies. The ocean provides major opportunities to mitigate and adapt to climate change, and the largest coastal vegetated habitat on Earth should not be ignored simply because it does not fit into existing frameworks.publishedVersio

    Climate-driven regime shift of a temperate marine ecosystem.

    Get PDF
    Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests

    Global seaweed productivity

    Get PDF
    The magnitude and distribution of net primary production (NPP) in the coastal ocean remains poorly constrained, particularly for shallow marine vegetation. Here, using a compilation of in situ annual NPP measurements across >400 sites in 72 geographic ecoregions, we provide global predictions of the productivity of seaweed habitats, which form the largest vegetated coastal biome on the planet. We find that seaweed NPP is strongly coupled to climatic variables, peaks at temperate latitudes, and is dominated by forests of large brown seaweeds. Seaweed forests exhibit exceptionally high per-area production rates (a global average of 656 and 1711 gC m−2 year−1 in the subtidal and intertidal, respectively), being up to 10 times higher than coastal phytoplankton in temperate and polar seas. Our results show that seaweed NPP is a strong driver of production in the coastal ocean and call for its integration in the oceanic carbon cycle, where it has traditionally been overlooked.publishedVersio

    Loss of a globally unique kelp forest from Oman

    Get PDF
    Kelp forests are declining in many regions globally with climatic perturbations causing shifts to alternate communities and significant ecological and economic loss. Range edge populations are often at most risk and are often only sustained through localised areas of upwelling or on deeper reefs. Here we document the loss of kelp forests (Ecklonia radiata) from the Sultanate of Oman, the only confirmed northern hemisphere population of this species. Contemporary surveys failed to find any kelp in its only known historical northern hemisphere location, Sadah on the Dhofar coast. Genetic analyses of historical herbarium specimens from Oman confirmed the species to be E. radiata and revealed the lost population contained a common CO1 haplotype found across South Africa, Australia and New Zealand suggesting it once established through rapid colonisation throughout its range. However, the Omani population also contained a haplotype that is found nowhere else in the extant southern hemisphere distribution of E. radiata. The loss of the Oman population could be due to significant increases in the Arabian Sea temperature over the past 40 years punctuated by suppression of coastal upwelling. Climate-mediated warming is threatening the persistence of temperate species and precipitating loss of unique genetic diversity at lower latitudes.info:eu-repo/semantics/publishedVersio

    The Importance of Marine Research Infrastructures in Capturing Processes and Impacts of Extreme Events

    Get PDF
    Extreme events have long been underestimated in the extent to which they shape the surface of our planet, our environment, its ecological integrity, and the sustainability of human society. Extreme events are by definition rarely observed, of significant impact and, as a result of their spatiotemporal range, not always easily predicted. Extremes may be short-term catastrophic events such as tsunamis, or long-term evolving events such as those linked to climate change; both modify the environment, producing irreversible changes or regime shifts. Whatever the driver that triggers the extreme event, the damages are often due to a combination of several processes and their impacts can affect large areas with secondary events (domino effect), whose effects in turn may persist well beyond the duration of the trigger event itself. Early studies of extreme events were limited to opportunistic approaches: observations were made within the context of naturally occurring events with high societal impact. Given that climate change is now moving us out of a relatively static climate regime during the development of human civilization, extreme events are now a function of underlying climate shifts overlain by catastrophic processes. Their impacts are often due to synergistic factors, all relevant in understanding process dynamics; therefore, an integrated methodology has become essential to enhance the reliability of new assessments and to develop strategies to mitigate societal impacts. Here we summarize the current state of extreme event monitoring in the marine system, highlighting the advantages of a multidisciplinary approach using Research Infrastructures for providing the temporal and spatial resolution required to monitor Earth processes and enhance assessment of associated impacts.publishedVersio

    Considering Intra-individual Genetic Heterogeneity to Understand Biodiversity

    Get PDF
    In this chapter, I am concerned with the concept of Intra-individual Genetic Hetereogeneity (IGH) and its potential influence on biodiversity estimates. Definitions of biological individuality are often indirectly dependent on genetic sampling -and vice versa. Genetic sampling typically focuses on a particular locus or set of loci, found in the the mitochondrial, chloroplast or nuclear genome. If ecological function or evolutionary individuality can be defined on the level of multiple divergent genomes, as I shall argue is the case in IGH, our current genetic sampling strategies and analytic approaches may miss out on relevant biodiversity. Now that more and more examples of IGH are available, it is becoming possible to investigate the positive and negative effects of IGH on the functioning and evolution of multicellular individuals more systematically. I consider some examples and argue that studying diversity through the lens of IGH facilitates thinking not in terms of units, but in terms of interactions between biological entities. This, in turn, enables a fresh take on the ecological and evolutionary significance of biological diversity

    Enemies with benefits: parasitic endoliths protect mussels against heat stress

    Get PDF
    Positive and negative aspects of species interactions can be context dependant and strongly affected by environmental conditions. We tested the hypothesis that, during periods of intense heat stress, parasitic phototrophic endoliths that fatally degrade mollusc shells can benefit their mussel hosts. Endolithic infestation significantly reduced body temperatures of sun-exposed mussels and, during unusually extreme heat stress, parasitised individuals suffered lower mortality rates than nonparasitised hosts. This beneficial effect was related to the white discolouration caused by the excavation activity of endoliths. Under climate warming, species relationships may be drastically realigned and conditional benefits of phototrophic endolithic parasites may become more important than the costs of infestation

    Global estimates of the extent and production of macroalgal forests

    Get PDF
    Aim Macroalgal habitats are believed to be the most extensive and productive of all coastal vegetated ecosystems. In stark contrast to the growing attention on their contribution to carbon export and sequestration, understanding of their global extent and production is limited and these have remained poorly assessed for decades. Here we report a first data-driven assessment of the global extent and production of macroalgal habitats based on modelled and observed distributions and net primary production (NPP) across habitat types. Location Global coastal ocean. Time period Contemporary. Major taxa studied Macroalgae. Methods Here we apply a comprehensive niche model to generate an improved global map of potential macroalgal distribution, constrained by incident light on the seafloor and substrate type. We compiled areal net primary production (NPP) rates across macroalgal habitats from the literature and combined this with our estimates of the global extent of these habitats to calculate global macroalgal NPP. Results We show that macroalgal forests are a major biome with a global area of 6.06–7.22 million km2, dominated by red algae, and NPP of 1.32 Pg C/year, dominated by brown algae. Main conclusions The global macroalgal biome is comparable, in area and NPP, to the Amazon forest, but is globally distributed as a thin strip around shorelines. Macroalgae are expanding in polar, subpolar and tropical areas, where their potential extent is also largest, likely increasing the overall contribution of algal forests to global carbon sequestration
    corecore