152 research outputs found

    Mechanism of action of probiotics

    Get PDF
    The modern diet doesn't provide the required amount of beneficial bacteria. Maintenance of a proper microbial ecology in the host is the main criteria to be met for a healthy growth. Probiotics are one such alternative that are supplemented to the host where by and large species of Lactobacillus, Bifidobacterium and Saccharomyces are considered as main probiotics. The field of probiotics has made stupendous strides though there is no major break through in the identification of their mechanism of action. They exert their activity primarily by strengthening the intestinal barrier and immunomodulation. The main objective of the study was to provide a deep insight into the effect of probiotics against the diseases, their applications and proposed mechanism of action

    The ICON Earth System Model Version 1.0

    Get PDF
    This work documents ICON-ESM 1.0, the first version of a coupled model based 19 on the ICON framework 20 • Performance of ICON-ESM is assessed by means of CMIP6 DECK experiments 21 at standard CMIP-type resolution 22 • ICON-ESM reproduces the observed temperature evolution. Biases in clouds, winds, 23 sea-ice, and ocean properties are larger than in MPI-ESM. Abstract 25 This work documents the ICON-Earth System Model (ICON-ESM V1.0), the first cou-26 pled model based on the ICON (ICOsahedral Non-hydrostatic) framework with its un-27 structured, icosahedral grid concept. The ICON-A atmosphere uses a nonhydrostatic dy-28 namical core and the ocean model ICON-O builds on the same ICON infrastructure, but 29 applies the Boussinesq and hydrostatic approximation and includes a sea-ice model. The 30 ICON-Land module provides a new framework for the modelling of land processes and 31 the terrestrial carbon cycle. The oceanic carbon cycle and biogeochemistry are repre-32 sented by the Hamburg Ocean Carbon Cycle module. We describe the tuning and spin-33 up of a base-line version at a resolution typical for models participating in the Coupled 34 Model Intercomparison Project (CMIP). The performance of ICON-ESM is assessed by 35 means of a set of standard CMIP6 simulations. Achievements are well-balanced top-of-36 atmosphere radiation, stable key climate quantities in the control simulation, and a good 37 representation of the historical surface temperature evolution. The model has overall bi-38 ases, which are comparable to those of other CMIP models, but ICON-ESM performs 39 less well than its predecessor, the Max Planck Institute Earth System Model. Problem-40 atic biases are diagnosed in ICON-ESM in the vertical cloud distribution and the mean 41 zonal wind field. In the ocean, sub-surface temperature and salinity biases are of con-42 cern as is a too strong seasonal cycle of the sea-ice cover in both hemispheres. ICON-43 ESM V1.0 serves as a basis for further developments that will take advantage of ICON-44 specific properties such as spatially varying resolution, and configurations at very high 45 resolution. 46 Plain Language Summary 47 ICON-ESM is a completely new coupled climate and earth system model that ap-48 plies novel design principles and numerical techniques. The atmosphere model applies 49 a non-hydrostatic dynamical core, both atmosphere and ocean models apply unstruc-50 tured meshes, and the model is adapted for high-performance computing systems. This 51 article describes how the component models for atmosphere, land, and ocean are cou-52 pled together and how we achieve a stable climate by setting certain tuning parameters 53 and performing sensitivity experiments. We evaluate the performance of our new model 54 by running a set of experiments under pre-industrial and historical climate conditions 55 as well as a set of idealized greenhouse-gas-increase experiments. These experiments were 56 designed by the Coupled Model Intercomparison Project (CMIP) and allow us to com-57 pare the results to those from other CMIP models and the predecessor of our model, the 58 Max Planck Institute for Meteorology Earth System Model. While we diagnose overall 59 satisfactory performance, we find that ICON-ESM features somewhat larger biases in 60 several quantities compared to its predecessor at comparable grid resolution. We empha-61 size that the present configuration serves as a basis from where future development steps 62 will open up new perspectives in earth system modellin

    International Society of Sports Nutrition Position Stand: Probiotics.

    Get PDF
    Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: 1)Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO).2)Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications.3)Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent.4)Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown.5)The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components.6)Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes' exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections.7)Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes.8)Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise.9)The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product's shelf life, as measured by colony forming units (CFU) or live cells.10)Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population

    The Human Gutome: Nutrigenomics of the Host–Microbiome Interactions

    No full text
    corecore