180 research outputs found

    Mathematical modelling of proton migration in Earth mantle

    Get PDF
    In the study, we address the mathematical problem of proton migration in the Earth’s mantle and suggest a prototype for exploring the Earth’s interior to map the effects of superionic proton conduction. The problem can be mathematically solved by deriving the self-consistent electromagnetic field potential U(x, t) and then reconstructing the distribution function f(x, v, t). Reducing the Vlasov-Maxwell system of equations to non-linear sh-Gordon hyperbolic and transport equations, the propagation of a non-linear wavefront within the domain and transport of the boundary conditions in the form of a non-linear wave are examined. By computing a 3D model and through Fourier-analysis, the spatial and electrical characteristics of potential U(x, t) are investigated. The numerical results are compared to the Fourier transformed quantities of the potential (V ) obtained through field observations of the electric potential (Kuznetsov method). The non-stationary solutions for the forced oscillation of two-component system, and therefore, the oscillatory strengths of two types of charged particles can be usefully addressed by the proposed mathematical model. Moreover, the model, along with data analysis of the electric potential observations and probabilistic seismic hazard maps, can be used to develop an advanced seismic risk metric

    Suspended Multifunctional Nanocellulose as Additive for Mortars

    Get PDF
    Cellulose derivatives have found significant applications in composite materials, mainly because of the increased mechanical performance they ensure. When added to cement-based materials, either in the form of nanocrystals, nanofibrils or micro/nanofibers, cellulose acts on the mixture with fresh and hardened properties, affecting rheology, shrinkage, hydration, and the resulting mechanical properties, microstructure, and durability. Commercial cotton wool was selected as starting material to produce multifunctional nanocelluloses to test as additives for mortars. Cotton wool was oxidized to oxidized nanocellulose (ONC), a charged nanocellulose capable of electrostatic interaction, merging cellulose and nanoparticles properties. Oxidized nanocellulose (ONC) was further functionalized by a radical-based mechanism with glycidyl methacrylate (GMA) and with a mixture of GMA and the crosslinking agent ethylene glycol dimethacrylate (EGDMA) affording ONC-GMA and ONC-GMA-EGDMA, both multifunctional-charged nanocellulose merging cellulose and bound acrylates properties. In this work, only ONC was found to be properly suitable for suspension and addition to a commercial mortar to assess the variation in mechanical properties and water-mortar interactions as a consequence of the modified microstructure obtained. The addition of oxidized nanocellulose caused an alteration of mortar porosity, with a decreased percentage of porosity and pore size distribution shifted towards smaller pores, with a consequent increase in compressive resistance, decrease in water absorption coefficient, and increased percentage of micropores present in the material, indicating a potential improvement in mortar durability

    Beads for Cell Immobilization: Comparison of Alternative Additive Manufacturing Techniques

    Get PDF
    The attachment or entrapment of microbial cells and enzymes are promising solutions for various industrial applications. When the traps are beads, they are dispersed in a fluidized bed in a vessel where a pump guarantees fresh liquid inflow and waste outflow without washing out the cells. Scientific papers report numerous types of cell entrapment, but most of their applications remain at the laboratory level. In the present research, rigid polymer beads were manufactured by two different additive manufacturing (AM) techniques in order to verify the economy, reusability, and stability of the traps, with a view toward a straightforward industrial application. The proposed solutions allowed for overcoming some of the drawbacks of traditional manufacturing solutions, such as the limited mechanical stability of gel traps, and they guaranteed the possibility of producing parts of constant quality with purposely designed exchange surfaces, which are unfeasible when using conventional processes. AM proved to be a viable manufacturing solution for beads with complex shapes of two different size ranges. A deep insight into the production and characteristics of beads manufactured by AM is provided. The paper provides biotechnologists with a manufacturing perspective, and the results can be directly applied to transit from the laboratory to the industrial scale

    Colorectal cancer liver metastatic growth depends on PAD4-driven citrullination of the extracellular matrix

    Get PDF
    Citrullination of proteins, a post-translational conversion of arginine residues to citrulline, is recognized in rheumatoid arthritis, but largely undocumented in cancer. Here we show that citrullination of the extracellular matrix by cancer cell derived peptidylarginine deiminase 4 (PAD4) is essential for the growth of liver metastases from colorectal cancer (CRC). Using proteomics, we demonstrate that liver metastases exhibit higher levels of citrullination and PAD4 than unaffected liver, primary CRC or adjacent colonic mucosa. Functional significance for citrullination in metastatic growth is evident in murine models where inhibition of citrullination substantially reduces liver metastatic burden. Additionally, citrullination of a key matrix component collagen type I promotes greater adhesion and decreased migration of CRC cells along with increased expression of characteristic epithelial markers, suggesting a role for citrullination in promoting mesenchymal-to-epithelial transition and liver metastasis. Overall, our study reveals the potential for PAD4-dependant citrullination to drive the progression of CRC liver metastasis

    Virtual Partner Interaction (VPI): Exploring Novel Behaviors via Coordination Dynamics

    Get PDF
    Inspired by the dynamic clamp of cellular neuroscience, this paper introduces VPI—Virtual Partner Interaction—a coupled dynamical system for studying real time interaction between a human and a machine. In this proof of concept study, human subjects coordinate hand movements with a virtual partner, an avatar of a hand whose movements are driven by a computerized version of the Haken-Kelso-Bunz (HKB) equations that have been shown to govern basic forms of human coordination. As a surrogate system for human social coordination, VPI allows one to examine regions of the parameter space not typically explored during live interactions. A number of novel behaviors never previously observed are uncovered and accounted for. Having its basis in an empirically derived theory of human coordination, VPI offers a principled approach to human-machine interaction and opens up new ways to understand how humans interact with human-like machines including identification of underlying neural mechanisms

    Quantum dots as new guests in the body: structural and functional data

    Get PDF
    Many promising applications of quantum dots (QDs) in nanomedicine and in vivo imaging for further diagnostic are being developed. Despite the immense potential for the medical applications of QDs, little is known about the bioavailability and health consequences of QDs in animals and humans. Although some investigators reported that QDs do not appear to cause toxicity, others demonstrated a variety of cytotoxic effects. In this study, QDs800 (InVitrogen) have been used. Previous data from our group evaluated the bio-distribution by optical imaging, transmission electron microscopy, inductively coupled plasma mass spectroscopy analysis in mice, and the effects on novel object recognition memory, EEG activity, and some histopatological analysis on mice in different organs (liver, spleen, lungs, testis, brain). Here, we studied the systemic inflammation caused by QDs in different organs, and then focussed our attention to the brain. It is known that brain inflammation leads to microglia and astrocyte activation, which in turn are sensitive to the changes in the CNS microenvironment and rapidly activated in all conditions that affect normal neuronal functions. We demonstrated that the presence of QDs could impair synaptic response and neuronal excitability; secondly, we are currently investigating whether the electrical changes are induced by QDs by themselves or by the inflammation induced by their presence

    Effects of Spider Venom Toxin PWTX-I (6-Hydroxytrypargine) on the Central Nervous System of Rats

    Get PDF
    The 6-hydroxytrypargine (6-HT) is an alkaloidal toxin of the group of tetrahydro-β-carbolines (THβC) isolated from the venom of the colonial spider Parawixia bistriata. These alkaloids are reversible inhibitors of the monoamine-oxidase enzyme (MAO), with hallucinogenic, tremorigenic and anxiolytic properties. The toxin 6-HT was the first THβC chemically reported in the venom of spiders; however, it was not functionally well characterized up to now. The action of 6-HT was investigated by intracerebroventricular (i.c.v.) and intravenous (i.v.) applications of the toxin in adult male Wistar rats, followed by the monitoring of the expression of fos-protein, combined with the use of double labeling immunehistochemistry protocols for the detection of some nervous receptors and enzymes related to the metabolism of neurotransmitters in the central nervous system (CNS). We also investigated the epileptiform activity in presence of this toxin. The assays were carried out in normal hippocampal neurons and also in a model of chronic epilepsy obtained by the use of neurons incubated in free-magnesium artificial cerebro-spinal fluid (ACSF). Trypargine, a well known THβC toxin, was used as standard compound for comparative purposes. Fos-immunoreactive cells (fos-ir) were observed in hypothalamic and thalamic areas, while the double-labeling identified nervous receptors of the sub-types rGlu2/3 and NMR1, and orexinergic neurons. The 6-HT was administrated by perfusion and ejection in “brain slices” of hippocampus, inducing epileptic activity after its administration; the toxin was not able to block the epileptogenic crisis observed in the chronic model of the epilepsy, suggesting that 6-HT did not block the overactive GluRs responsible for this epileptic activity

    Transfer entropy—a model-free measure of effective connectivity for the neurosciences

    Get PDF
    Understanding causal relationships, or effective connectivity, between parts of the brain is of utmost importance because a large part of the brain’s activity is thought to be internally generated and, hence, quantifying stimulus response relationships alone does not fully describe brain dynamics. Past efforts to determine effective connectivity mostly relied on model based approaches such as Granger causality or dynamic causal modeling. Transfer entropy (TE) is an alternative measure of effective connectivity based on information theory. TE does not require a model of the interaction and is inherently non-linear. We investigated the applicability of TE as a metric in a test for effective connectivity to electrophysiological data based on simulations and magnetoencephalography (MEG) recordings in a simple motor task. In particular, we demonstrate that TE improved the detectability of effective connectivity for non-linear interactions, and for sensor level MEG signals where linear methods are hampered by signal-cross-talk due to volume conduction
    corecore