56 research outputs found

    Palliative radiotherapy in addition to self-expanding metal stent for improving dysphagia and survival in advanced oesophageal cancer (ROCS: Radiotherapy after Oesophageal Cancer Stenting):study protocol for a randomized controlled trial

    Get PDF
    Background: The single most distressing symptom for patients with advanced esophageal cancer is dysphagia. Amongst the more effective treatments for relief of dysphagia is insertion of a self-expanding metal stent (SEMS). It is possible that the addition of a palliative dose of external beam radiotherapy may prolong the relief of dysphagia and provide additional survival benefit. The ROCS trial will assess the effect of adding palliative radiotherapy after esophageal stent insertion. Methods/Design: The study is a randomized multicenter phase III trial, with an internal pilot phase, comparing stent alone versus stent plus palliative radiotherapy in patients with incurable esophageal cancer. Eligible participants are those with advanced esophageal cancer who are in need of stent insertion for primary management of dysphagia. Radiotherapy will be administered as 20 Gray (Gy) in five fractions over one week or 30 Gy in 10 fractions over two weeks, within four weeks of stent insertion. The internal pilot will assess rates and methods of recruitment; pre-agreed criteria will determine progression to the main trial. In total, 496 patients will be randomized in a 1:1 ratio with follow up until death. The primary outcome is time to progression of patient-reported dysphagia. Secondary outcomes include survival, toxicity, health resource utilization, and quality of life. An embedded qualitative study will explore the feasibility of patient recruitment by examining patients’ motivations for involvement and their experiences of consent and recruitment, including reasons for not consenting. It will also explore patients’ experiences of each trial arm. Discussion: The ROCS study will be a challenging trial studying palliation in patients with a poor prognosis. The internal pilot design will optimize methods for recruitment and data collection to ensure that the main trial is completed on time. As a pragmatic trial, study strengths include collection of all follow-up data in the usual place of care, and a focus on patient-reported, rather than disease-orientated, outcomes. Exploration of patient experience and health economic analyses will be integral to the assessment of benefit for patients and the NHS

    Recreational sea fishing in Europe in a global contextParticipation rates, fishing effort, expenditure, and implications for monitoring and assessment

    Get PDF
    Marine recreational fishing (MRF) is a high-participation activity with large economic value and social benefits globally, and it impacts on some fish stocks. Although reporting MRF catches is a European Union legislative requirement, estimates are only available for some countries. Here, data on numbers of fishers, participation rates, days fished, expenditures, and catches of two widely targeted species were synthesized to provide European estimates of MRF and placed in the global context. Uncertainty assessment was not possible due to incomplete knowledge of error distributions; instead, a semi-quantitative bias assessment was made. There were an estimated 8.7 million European recreational sea fishers corresponding to a participation rate of 1.6%. An estimated 77.6 million days were fished, and expenditure was Euro5.9 billion annually. There were higher participation, numbers of fishers, days fished and expenditure in the Atlantic than the Mediterranean, but the Mediterranean estimates were generally less robust. Comparisons with other regions showed that European MRF participation rates and expenditure were in the mid-range, with higher participation in Oceania and the United States, higher expenditure in the United States, and lower participation and expenditure in South America and Africa. For both northern European sea bass (Dicentrarchus labrax, Moronidae) and western Baltic cod (Gadus morhua, Gadidae) stocks, MRF represented 27% of the total removals. This study highlights the importance of MRF and the need for bespoke, regular and statistically sound data collection to underpin European fisheries management. Solutions are proposed for future MRF data collection in Europe and other regions to support sustainable fisheries management.Institut Francais de Recherche pour l'Exploitation de la Mer; French Ministry of Fisheries Management; Greek National Data Collection Programme; European Commission, Data Collection Framework; Department for Environment, Food and Rural Affairs [MF1221, MF1230, MI001]; Norges Forskningsrad [267808]; State Department of Agriculture, Food Security and Fisheries Mecklenburg-Western Pomerania; Interreg IVa 2 Seas; Dutch Ministry of Economic Affairs; European Fishery Fund; Government of Galicia [ED481B2014/034-0

    Synthesis and in vitro antibacterial activity of new meropenem analogs

    No full text

    An ecological perspective on the deployment and design of low-crested and other hard coastal defence structures

    Get PDF
    Coastal areas play a crucial role in the economical, social and political development of most countries; they support diverse and productive coastal ecosystems that provide valuable goods and services. Globally flooding and coastal erosion represent serious threats along many coastlines, and will become more serious as a consequence of human-induced changes and accelerated sea-level rise. Over the past century, hard coastal defence structures have become ubiquitous features of coastal landscapes as a response to these threats. The proliferation of defence works can affect over half of the shoreline in some regions and results in dramatic changes to the coastal environment. Surprisingly little attention has been paid to the ecological consequences of coastal defence. Results from the DELOS (Environmental Design of Low Crested Coastal Defence Structures, EVK3-CT-2000-00041) project indicate that the construction of coastal defence structures will affect coastal ecosystems. The consequences can be seen on a local scale, as disruption of surrounding soft-bottom environments and introduction of new artificial hard-bottom habitats, with consequent changes to the native assemblages of the areas. Proliferation of coastal defence structures can also have critical impacts on regional species diversity, removing isolating barriers, favouring the spread of non-native species and increasing habitat heterogeneity. Knowledge of the environmental context in which coastal defence structures are placed is fundamental to an effective management of these structures as, while there are some general consequences of such construction, many effects are site specific. Advice is provided to meet specific management goals, which include mitigating specific impacts on the environment, such as minimising changes to surrounding sediments, spread of exotic species or growth of nuisance species, and/or enhancing specific natural resources, for example enhancing fish recruitment or promoting diverse assemblages for eco-tourism. The DELOS project points out that the downstream effects of defence structures on coastal processes and regional-scale impacts on biodiversity necessitate planning and management at a regional (large coastline) scale. To effectively understand and manage coastal defences, environmental management goals must be clearly stated and incorporated into the planning, construction, and monitoring stages
    • 

    corecore