1,185 research outputs found
A magnetic model for the incommensurate I phase of spin-Peierls systems
A magnetic model is proposed for describing the incommensurate I phase of
spin-Peierls systems. Based on the harmonicity of the lattice distortion, its
main ingredient is that the distortion of the lattice adjusts to the average
magnetization such that the system is always gapful. The presence of dynamical
incommensurabilities in the fluctuation spectra is also predicted. Recent
experimental results for CuGeO_3 obtained by NMR, ESR and light scattering
absorption are well understood within this model.Comment: 8 pages, 3 figures, Latex with EPL style files all include
Recent benthic foraminifera from the Tagus Prodelta and Estuary, Portugal: microhabitats, assemblage composition and stable isotopes
Finite Temperature DMRG Investigation of the Spin-Peierls Transition in CuGeO
We present a numerical study of thermodynamical properties of dimerized
frustrated Heisenberg chains down to extremely low temperatures with
applications to CuGeO. A variant of the finite temperature density matrix
renormalization group (DMRG) allows the study of the dimerized phase previously
unaccessible to ab initio calculations. We investigate static dimerized systems
as well as the instability of the quantum chain towards lattice dimerization.
The crossover from a quadratic response in the free energy to the distortion
field at finite temperature to nonanalytic behavior at zero temperature is
studied quantitatively. Various physical quantities are derived and compared
with experimental data for CuGeO such as magnetic dimerization, critical
temperature, susceptibility and entropy.Comment: LaTeX, 5 pages, 5 eps figures include
Circular Orbits in Einstein-Gauss-Bonnet Gravity
The stability under radial and vertical perturbations of circular orbits
associated to particles orbiting a spherically symmetric center of attraction
is study in the context of the n-dimensional: Newtonian theory of gravitation,
Einstein's general relativity, and Einstein-Gauss-Bonnet theory of gravitation.
The presence of a cosmological constant is also considered. We find that this
constant as well as the Gauss-Bonnet coupling constant are crucial to have
stability for .Comment: 11 pages, 4 figs, RevTex, Phys. Rev. D, in pres
Raman Response of Magnetic Excitations in Cuprate Ladders and Planes
An unified picture for the Raman response of magnetic excitations in cuprate
spin-ladder compounds is obtained by comparing calculated two-triplon Raman
line-shapes with those of the prototypical compounds SrCu2O3 (Sr123),
Sr14Cu24O41 (Sr14), and La6Ca8Cu24O41 (La6Ca8). The theoretical model for the
two-leg ladder contains Heisenberg exchange couplings J_parallel and J_perp
plus an additional four-spin interaction J_cyc. Within this model Sr123 and
Sr14 can be described by x:=J_parallel/J_perp=1.5, x_cyc:=J_cyc/J_perp=0.2,
J_perp^Sr123=1130 cm^-1 and J_perp^Sr14=1080 cm^-1. The couplings found for
La6Ca8 are x=1.2, x_cyc=0.2, and J_perp^La6Ca8=1130 cm^-1. The unexpected sharp
two-triplon peak in the ladder materials compared to the undoped
two-dimensional cuprates can be traced back to the anisotropy of the magnetic
exchange in rung and leg direction. With the results obtained for the isotropic
ladder we calculate the Raman line-shape of a two-dimensional square lattice
using a toy model consisting of a vertical and a horizontal ladder. A direct
comparison of these results with Raman experiments for the two-dimensional
cuprates R2CuO4 (R=La,Nd), Sr2CuO2Cl2, and YBa2Cu3O(6+delta) yields a good
agreement for the dominating two-triplon peak. We conclude that short range
quantum fluctuations are dominating the magnetic Raman response in both,
ladders and planes. We discuss possible scenarios responsible for the
high-energy spectral weight of the Raman line-shape, i.e. phonons, the
triple-resonance and multi-particle contributions.Comment: 10 pages, 6 figure
Records of past mid-depth ventilation: Cretaceous ocean anoxic event 2 vs. Recent oxygen minimum zones
Present day oceans are well ventilated, with the exception of mid-depth oxygen minimum zones (OMZs) under high surface water productivity, regions of sluggish circulation, and restricted marginal basins. In the Mesozoic, however, entire oceanic basins transiently became dysoxic or anoxic. The Cretaceous ocean anoxic events (OAEs) were characterised by laminated organic-carbon rich shales and low-oxygen indicating trace fossils preserved in the sedimentary record. Yet assessments of the intensity and extent of Cretaceous near-bottom water oxygenation have been hampered by deep or long-term diagenesis and the evolution of marine biota serving as oxygen indicators in today's ocean. Sedimentary features similar to those found in Cretaceous strata were observed in deposits underlying Recent OMZs, where bottom-water oxygen levels, the flux of organic matter, and benthic life have been studied thoroughly. Their implications for constraining past bottom-water oxygenation are addressed in this review. We compared OMZ sediments from the Peruvian upwelling with deposits of the late Cenomanian OAE 2 from the north-west African shelf. Holocene laminated sediments are encountered at bottom-water oxygen levels of 10 μmol kg−1 showed an inverse exponential relationship of bottom-water oxygen levels and organic carbon accumulation depicting enhanced bioirrigation and decomposition of organic matter with increased oxygen supply. In the absence of seasonal laminations and under conditions of low burial diagenesis, this relationship may facilitate quantitative estimates of palaeo-oxygenation. Similarities and differences between Cretaceous OAEs and late Quaternary OMZs have to be further explored to improve our understanding of sedimentary systems under hypoxic conditions
Geo-Biological Investigations on Azooxanthellate Cold-Water Coral Reefs on the Carbonate Mounds Along the Celtic Continental Slope
Northeast Atlantic 2004 Cruise No. 61, Leg 1 April 19 to May 4, 2004, Lisbon – Cor
Thermal photon production in heavy ion collisions
Using a three-dimensional hydrodynamic simulation of the collision and an
equation of state containing a first order phase transition to the quark-gluon
plasma, we study thermal photon production for collisions at
AGeV and for collisions at AGeV. We obtain
surprisingly high rates of thermal photons even at the lower energy, suggesting
that, contrary to what was expected so far, photon production may be an
interesting topic for experimental search also at the Alternating Gradient
Synchrotron. When applied to the reaction at AGeV, our model can
reproduce preliminary data obtained by the WA80 Collaboration without having to
postulate the existence of an extremely long-lived mixed phase as was recently
proposed.Comment: 9 pages, figures are uudecoded compressed and tare
- …
