1,185 research outputs found

    A magnetic model for the incommensurate I phase of spin-Peierls systems

    Full text link
    A magnetic model is proposed for describing the incommensurate I phase of spin-Peierls systems. Based on the harmonicity of the lattice distortion, its main ingredient is that the distortion of the lattice adjusts to the average magnetization such that the system is always gapful. The presence of dynamical incommensurabilities in the fluctuation spectra is also predicted. Recent experimental results for CuGeO_3 obtained by NMR, ESR and light scattering absorption are well understood within this model.Comment: 8 pages, 3 figures, Latex with EPL style files all include

    Finite Temperature DMRG Investigation of the Spin-Peierls Transition in CuGeO3_3

    Full text link
    We present a numerical study of thermodynamical properties of dimerized frustrated Heisenberg chains down to extremely low temperatures with applications to CuGeO3_3. A variant of the finite temperature density matrix renormalization group (DMRG) allows the study of the dimerized phase previously unaccessible to ab initio calculations. We investigate static dimerized systems as well as the instability of the quantum chain towards lattice dimerization. The crossover from a quadratic response in the free energy to the distortion field at finite temperature to nonanalytic behavior at zero temperature is studied quantitatively. Various physical quantities are derived and compared with experimental data for CuGeO3_3 such as magnetic dimerization, critical temperature, susceptibility and entropy.Comment: LaTeX, 5 pages, 5 eps figures include

    Circular Orbits in Einstein-Gauss-Bonnet Gravity

    Get PDF
    The stability under radial and vertical perturbations of circular orbits associated to particles orbiting a spherically symmetric center of attraction is study in the context of the n-dimensional: Newtonian theory of gravitation, Einstein's general relativity, and Einstein-Gauss-Bonnet theory of gravitation. The presence of a cosmological constant is also considered. We find that this constant as well as the Gauss-Bonnet coupling constant are crucial to have stability for n>4n>4.Comment: 11 pages, 4 figs, RevTex, Phys. Rev. D, in pres

    Raman Response of Magnetic Excitations in Cuprate Ladders and Planes

    Full text link
    An unified picture for the Raman response of magnetic excitations in cuprate spin-ladder compounds is obtained by comparing calculated two-triplon Raman line-shapes with those of the prototypical compounds SrCu2O3 (Sr123), Sr14Cu24O41 (Sr14), and La6Ca8Cu24O41 (La6Ca8). The theoretical model for the two-leg ladder contains Heisenberg exchange couplings J_parallel and J_perp plus an additional four-spin interaction J_cyc. Within this model Sr123 and Sr14 can be described by x:=J_parallel/J_perp=1.5, x_cyc:=J_cyc/J_perp=0.2, J_perp^Sr123=1130 cm^-1 and J_perp^Sr14=1080 cm^-1. The couplings found for La6Ca8 are x=1.2, x_cyc=0.2, and J_perp^La6Ca8=1130 cm^-1. The unexpected sharp two-triplon peak in the ladder materials compared to the undoped two-dimensional cuprates can be traced back to the anisotropy of the magnetic exchange in rung and leg direction. With the results obtained for the isotropic ladder we calculate the Raman line-shape of a two-dimensional square lattice using a toy model consisting of a vertical and a horizontal ladder. A direct comparison of these results with Raman experiments for the two-dimensional cuprates R2CuO4 (R=La,Nd), Sr2CuO2Cl2, and YBa2Cu3O(6+delta) yields a good agreement for the dominating two-triplon peak. We conclude that short range quantum fluctuations are dominating the magnetic Raman response in both, ladders and planes. We discuss possible scenarios responsible for the high-energy spectral weight of the Raman line-shape, i.e. phonons, the triple-resonance and multi-particle contributions.Comment: 10 pages, 6 figure

    Records of past mid-depth ventilation: Cretaceous ocean anoxic event 2 vs. Recent oxygen minimum zones

    Get PDF
    Present day oceans are well ventilated, with the exception of mid-depth oxygen minimum zones (OMZs) under high surface water productivity, regions of sluggish circulation, and restricted marginal basins. In the Mesozoic, however, entire oceanic basins transiently became dysoxic or anoxic. The Cretaceous ocean anoxic events (OAEs) were characterised by laminated organic-carbon rich shales and low-oxygen indicating trace fossils preserved in the sedimentary record. Yet assessments of the intensity and extent of Cretaceous near-bottom water oxygenation have been hampered by deep or long-term diagenesis and the evolution of marine biota serving as oxygen indicators in today's ocean. Sedimentary features similar to those found in Cretaceous strata were observed in deposits underlying Recent OMZs, where bottom-water oxygen levels, the flux of organic matter, and benthic life have been studied thoroughly. Their implications for constraining past bottom-water oxygenation are addressed in this review. We compared OMZ sediments from the Peruvian upwelling with deposits of the late Cenomanian OAE 2 from the north-west African shelf. Holocene laminated sediments are encountered at bottom-water oxygen levels of 10 μmol kg−1 showed an inverse exponential relationship of bottom-water oxygen levels and organic carbon accumulation depicting enhanced bioirrigation and decomposition of organic matter with increased oxygen supply. In the absence of seasonal laminations and under conditions of low burial diagenesis, this relationship may facilitate quantitative estimates of palaeo-oxygenation. Similarities and differences between Cretaceous OAEs and late Quaternary OMZs have to be further explored to improve our understanding of sedimentary systems under hypoxic conditions

    Thermal photon production in heavy ion collisions

    Get PDF
    Using a three-dimensional hydrodynamic simulation of the collision and an equation of state containing a first order phase transition to the quark-gluon plasma, we study thermal photon production for Au+AuAu+Au collisions at Elab=11.5E_{lab}=11.5 AGeV and for Pb+PbPb+Pb collisions at 160160 AGeV. We obtain surprisingly high rates of thermal photons even at the lower energy, suggesting that, contrary to what was expected so far, photon production may be an interesting topic for experimental search also at the Alternating Gradient Synchrotron. When applied to the reaction S+AuS+Au at 200200 AGeV, our model can reproduce preliminary data obtained by the WA80 Collaboration without having to postulate the existence of an extremely long-lived mixed phase as was recently proposed.Comment: 9 pages, figures are uudecoded compressed and tare
    corecore