An unified picture for the Raman response of magnetic excitations in cuprate
spin-ladder compounds is obtained by comparing calculated two-triplon Raman
line-shapes with those of the prototypical compounds SrCu2O3 (Sr123),
Sr14Cu24O41 (Sr14), and La6Ca8Cu24O41 (La6Ca8). The theoretical model for the
two-leg ladder contains Heisenberg exchange couplings J_parallel and J_perp
plus an additional four-spin interaction J_cyc. Within this model Sr123 and
Sr14 can be described by x:=J_parallel/J_perp=1.5, x_cyc:=J_cyc/J_perp=0.2,
J_perp^Sr123=1130 cm^-1 and J_perp^Sr14=1080 cm^-1. The couplings found for
La6Ca8 are x=1.2, x_cyc=0.2, and J_perp^La6Ca8=1130 cm^-1. The unexpected sharp
two-triplon peak in the ladder materials compared to the undoped
two-dimensional cuprates can be traced back to the anisotropy of the magnetic
exchange in rung and leg direction. With the results obtained for the isotropic
ladder we calculate the Raman line-shape of a two-dimensional square lattice
using a toy model consisting of a vertical and a horizontal ladder. A direct
comparison of these results with Raman experiments for the two-dimensional
cuprates R2CuO4 (R=La,Nd), Sr2CuO2Cl2, and YBa2Cu3O(6+delta) yields a good
agreement for the dominating two-triplon peak. We conclude that short range
quantum fluctuations are dominating the magnetic Raman response in both,
ladders and planes. We discuss possible scenarios responsible for the
high-energy spectral weight of the Raman line-shape, i.e. phonons, the
triple-resonance and multi-particle contributions.Comment: 10 pages, 6 figure