Abstract

We present a numerical study of thermodynamical properties of dimerized frustrated Heisenberg chains down to extremely low temperatures with applications to CuGeO3_3. A variant of the finite temperature density matrix renormalization group (DMRG) allows the study of the dimerized phase previously unaccessible to ab initio calculations. We investigate static dimerized systems as well as the instability of the quantum chain towards lattice dimerization. The crossover from a quadratic response in the free energy to the distortion field at finite temperature to nonanalytic behavior at zero temperature is studied quantitatively. Various physical quantities are derived and compared with experimental data for CuGeO3_3 such as magnetic dimerization, critical temperature, susceptibility and entropy.Comment: LaTeX, 5 pages, 5 eps figures include

    Similar works

    Full text

    thumbnail-image

    Available Versions